CIT — INTRODUCTION TO PROGRAMMING IN C

ONLINE
SUPPROT SERVICES Q\

(:>|gnou é§
LOJ e

CERTIFICA N
INFORMATIO&@CHNOLOGY

/s =

gr% V| NIRMIAN
\ v/ CAMPUS
\\A -4,1/ OF EDUCATION

g V™ RESEARCH &
NC RT TRAINING

mﬁa@j’m g foeiTo

Q\/Run & Managed by NASO
& IGNOUSC-2281

Jakhepal-Ghasiwala Road, Sunam

For more information visit us at: nirmancampus.co.in

Call us at: 9815098210, 9256278000

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

PROGRAM AND PROGRAMMING
A program is a set of instructions. These instructions are arranged in a sequence to solve a problem.
The process of writing a program is called Programming. These computer programs or software can
be broadly classified into two categories:

e System Software, and

e Application Software
System software is used to control the functionality of the computer system while the Application
programs are used to solve a particular problem of the user. There are many computer languages used
for developing these software.

DEVELOPMENT OF AN EFFICIENT PROGRAM

Before developing a program, programmer must have the precise details of the problem to be solved.
These include the inputs available and the outputs to be generated. During“development, a
programmer has to pass the several stages of software. These stages are:

Problem Definition: Before software development, a programmer must“know the details of the
problem to be solved. It takes considerable skill to determine the probléms in the existing system.
Under study system provides the details of the problem to be solved. The' programmer studies them.
He discusses them with the System Analyst or the user and tries to understand the requirements.

Algorithm: The algorithm is a sequence of finite steps to solve a given problem. The construction of
the algorithm requires creative thinking. Before developinga system, a programmer first set out the
algorithm to visualize possible alternatives.

Flow-Charts: Flow-Chart is the pictorial representation of the algorithm. By using the suitable data
the programmer should check the validity of his legic. This is very important for understanding the
problem logic.

Coding: The sequence of operations<defined in flow-chart are converted into a High-Level
programming language such as C, C++mand"PASCAL etc. writing the instructions using some computer
language is called coding. This coding fileyis known as source program.

Compilation: The source programiis fed into the computer. But a computer does not understand this
source file. The compiler, converts it into a machine understandable form. This machine
understandable form isfknown as object code. This conversion of source code into object code is
known as compilation. Duping compilation, compiler scans the source program for syntax errors. If
there are syntax errors)in the program, compiler generates error messages. These errors must be
corrected to generate the object code.

Testing Process: The compiler only detects errors in the syntax. It cannot find the errors in the logic
of the program. It is the programmer’s task to find these logical errors. Any faulty logic can only be
detected by examining the output. Finding and correcting such errors in the program is known as
Debugging. This entire process is called Testing.

ALGORITHM

There are many definitions of an algorithm. The following definition is appropriate in computing
science.

“The term algorithm may be defined as a sequence of instructions written in such a way that if
the instructions are executed in the specified sequence, the desired result will be obtained.”

In simple words, we can say that it is a finite set of sequence of steps to solve a particular problem. It
must terminate and should not repeat one or more instructions infinitely.

DEVELOPING AN ALGORITHM

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C
The first step in developing an algorithm is to identify a problem. Once a problem is identified, it is
necessary to develop a step-by-step method of solution to solve the problem using a computer.
In algorithms, steps are very important because all the instructions are listed in the order in which
they are carried out. Algorithms can be written in ordinary language like English.
The salient points for writing algorithm are given below:
The inputs and outputs should be carefully specified.
The flow of program execution should be taken care.
Subroutines and functions should be used wherever required.
The instructions should not be unclear.
Number of repetitions should be finite i.e. the procedure should reach to some result.
Algorithm must produce output(s)

Following are some examples of algorithms:
Examplel: Calculate and print multiplication of two numbers:
Algorithm
Step1: Read two numbers A and B.
Step2: Multiply A and B and store it in C.
Step3: Print C.
Step4: Stop.
Example2: Write an algorithm to decide whether roots of ax?2+bx+c=0 will be real or not,given
a=0.
Algorithm
Setp1: Read values of A, B and C
Step2: Calculate D=B2- 4AC.
Step3: If D<0 then
Print - Roots are not real.
Else
Print - Roots are real.
Step4: Stop
Example3: Write an algorithm to find-the sum of 1 to N natural positive integers.
Algorithm
Step1: Read value of N
Step2: SUM=0;
Step3: Repeat Step4EORT=1 to N
Step4: SUM=SUM+{
Step5: Print SUM
Step6: Stop

FLOW CHARTING
Flow chart“is the pictorial representation of algorithm. Flow charts are not required, but they are
helpful in better understanding of the program logic.
Flowcharts-dre of two types:

o . System Flow Charts.

¢) Program Flow Charts.
System Flowcharts
A system flowchart describes the data flow and operations for a data processing system. These
flowcharts show how the data processing is to be accomplished.
Program Flowcharts
A program flowchart describes the sequence of operations and decisions for a particular program.
Program Flowcharts make use of standard conventions & symbols for various types of processing
operations.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

SYMBOLS USED IN FLOW CHARTS.
The following symbols are used for drawing flow charts:

1. The terminal Symbol: Rectangles with rounded ends are used to C ot/ >
indicate the beginning (START) and end (STOP)

2. The Input/ Output symbol: Parallelograms are used to represent Tnput Name
input/output operations.

3. The process/storage symbol: Rectangles are used to indicate the
processing operation such as storage or the arithmetic operations Num=A+B

4. The decision symbol: Diamond shaped boxes are used for decision-
making procedures. The arrows pointing out are labeled with Yes or
No.

5. Pre-defined process symbol: Rectangle with width shown as double Index
lines is used to represent a process which has been set out in detail Transactions
somewhere else.

6. Arrows: Are used to show the flow of sequence of symbols. l ’
7. Notes: Are used to add descriptions or notes or remarks {
8. Connector: Exit to, Entry from another part of. flow chart. O e |:>

Advantages of Flow Charts:
1. Flow charts help us to understand the legic of the problem.
2. With the help of flow-charts; logic drawn by one programmer is understood by other easily.
3. Itis easier to detect a logical errorin the flowchart than in the program listing.
4. Flow charts help alotin program maintenance.
Disadvantages of Flow-Charts:
1. Itbecomes difficult to keep a flowchart neat and uncluttered if logic is complex.
2. Itisdifficult to change flow-chart without redrawing it, which is time consuming.
3. They sometimes become big and complex.

FLOWCHART EXAMPLES:
Examplel: Given the length L and breadth B for a rectangle. Find the area A and perimeter P.

START

.

ENIER L AND B

| i |
| P=2(L+B) |
|

¥
OUTPUT A AND P

$

STOP

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

BASIC BUILDING BLOCKS OF C LANGUAGE
HISTORY OF C LANGUAGE
C language is very popular programming language. It was developed in the early 1970s. It was developed by
Dennis M. Ritchie at Bell Labs (AT&T). It is developed from the BCPL (Basic Combined Programming
Language). C Language is also called the Middle Level Programming language. It is because, it can be used
to develop System and Application Programs.

STRUCTURE OF A C PROGRAM

The structure of a C program is a protocol (rules) to the programmer. These rules guide the programmerhow
to create the structure of the C program. The general basic structure of C program is shown in the_figure
below.

(Docu mertatuc:r_s)

[:Ere process or statemen-'.;)

(Gloualdecm-a:umg :}

Main ()

{

Local declarabons

Program statements Booy"ol the
Main [) function

Caling user defined functions (option 1o user)

!

User defined functions -
Functicn 1

Function 2

Function n

(Option to GS&r)

Documentations

The documentation section consists of a(set of comment lines. It allows programmer to define some
description of the program.

Preprocessor Statements

The preprocessor statement begins with'# symbol. They are also called the preprocessor directive. These
statements instruct the compiler t@ include header files or to define symbolic constants etc. before
compiling. Some of the preprocessor statements are listed below.

include <stdio.h> # define P L 3.1412.)

include <math.h> | ; . ; - .
; : | Rt $iias # define TRVE 1 . Symbolic constants

include <stdlib.h> # define FALSE O |

include <CONIO.h> | 4

Global Declarations

Global declaratiens can eb variables or functions. They are declared before the main () function. These
global xatiables can be accessed by all the user defined functions in the program.

The‘main.() function

Exeeution of C program starts with main () function. No C program is executed without the main function.
Every C program should contain only one main () function.

Braces

The left braces after main() indicates the beginning of the main () function and the right braces indicates the
end of the main () function.

Local Declarations

Variables declared inside main() are local declarations of main() functions. They can be used only within the
main() function.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

Program statements

These statements are the instructions of program. They are used to perform a specific task (operations). An
instruction may contain an input-output statements, expression, control statements, simple assignment
statements etc. Each executable statement should be terminated with semicolon.

User defined functions

These are subprograms. A subprogram is also a function. Subprograms are the logical grouping of
statements to perform some specific task. These functions are written by the user. Therefore, they are called
user defined functions.

CHARACTER SET:

The set of allowed characters in the language is called the character set. These character areyused to
form the vocabulary of the language, i.e. identifiers, keywords, constants, variable etc. Character set of
C consists of:

e Letters - Alphabets in Upper and Lower Case,i.e.A-Zanda-z

e Digits-From0to9

e Special characters: e.g. & *,+,%,=,1,%,>,7,(,), {, } etc.

TOKENS

Tokens are like the words and punctuation marks in natural languagei TheSe are the basic and the
smallest units of C program. Similarly, in C these elements are keywords, constants, identifiers,
operators, strings, and special Symbols. These are called tokens of clanguage. Following figure shows
the six types of tokens present in the C language.

Tokens

Identifiers Constanis

Kevworids Strings Operator Special
eg eg e.g. eg. e.g Syvmbaols
float, roll, 314 “Kansal” T A e.g.
int, age 100 “EIT At 1.

void ete. name etc. etc elc élc etc

Figure — Types of C Tokens with Examples

Any C program consists of these tokens.

IDENTIFIERS
An Identifier is a name giyén to’a programming element. This program element can be a variable,
constant, function, array, structure etc. An identifier consists of a few letters, numbers and a special
character (underscore). An identifier consists of maximum of 31 characters. C is a case sensitive
language. It means. identifiers in upper and lower case are distinct.
Rules for declaringidentifiers:
Following are the rules for declaring identifiers:

1. The.name of the identifier must begin with a character.

2. The name of identifier can contain maximum of 31 characters.

3wldentifier name cannot be a keyword.

4. “Don’t use white space in the name of identifier.

5/ An identifier name can have letters, digits and valid special characters (underscore).
Following are some examples of valid identifier:

roll, al, first_name, age, fathername etc.

Following names for identifiers are invalid:

la — because first character must be a character

void — because it is a keyword

firstname — because it contains white space

%age — because it contains a special character except than underscore

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

KEY WORDS/RESERVE WORDS

Those words which are predefined in the compiler of C language are called keywords. Keywords are
also known as reserve words. We cannot change the meaning of these keywords. All the keywords
must be written in the lower case characters only. When we use these keywords in the Turbo C Editor,
they are displayed in the white color. Normally, a C compiler has 32 keywords. But new C Compilers
have 37 keywords. Following are the C language keyword:

auto const double float int short struct union
break continue else for long signed switch unsigned
case default enum goto register sizeof typedef void
char do extern if return static volatile while
VARIABLES

The term ‘variable’ consists of two words vari (vary) + able. It means which can be chariged. Thus, a
variable allows us to change its value during runtime/execution time of the program.These are used
to store the data temporarily in the main memory of computer. This data remain in memory during
the execution of program.
To use variables in the program, they must be declared in program. Fer this, programmers have to
give it a name and a data type. For deciding a variable name, following rules'should be taken care.
1) The name of variable should not exceed than 31 characters.
2) Avariable name can contain alphabets, digits or underscore;
3) The variable name must start with a Character.
4) Special Symbols except Underscore ‘_’ are not allowed in-variable name.
5) Akeyword cannot be a variable name.
6) Uppercase and lowercase variable names are_significant, i.e.,, roll, ROLL and Roll are the
different variables.
Some examples of valid variable names are - alsfirstiname, my_float_no, age, rollno etc.
Type Declaration/ Variable Declaration
C language is a strongly typed language. [t‘'means all the variables must be declared before using them.
Variable declaration contains two things:
1. The data type of variable, and
2. The variable name
The syntax for declaring a variable,is:
Data_typevariable_nante;
Here, Data_type tells thetype of data to be stored in the variable. The variable_name is any valid name
for the variable.
For example: int age; float percent; char grade;
In the above examples;int, float and char are the data types and age, percent and grade are the valid
variable names.
Storing/Assigning Value To A Variable
Assigning valués to a variable means storing a value in the variable. For this we use assignment
operator,'e.g.
int a; char grade;
a=20; grade = ‘A’;
In the above example, 20 value is assigned to an integer variable ‘a’ with the help of assignment
operator. Here, ‘=" is the assignment operator.
Variable Initialization
It is an assignment to variable at declaration time. For example:
int age = 20;
float pi = 3.14;

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

CONSTANTS:

Those identifiers which do not allow to change their value during execution time of program are
called constants. So, constants have fixed values. C supports several types of constants. We can classify
the constants as follows-

¥ i ol E anzal

Figure: Types of Constants in C

Numeric Constants:

These constants consist of digits from 0 to 9. They can be with or witheut decimal points in them.

These numbers may be preceded with +ve or —ve sign. There are two types of numeric constants:

(1) Integer Constants
(2) Real or Floating Point Constants

1. Integer Constants: It is a signed or unsigned whole number.\C supports Integer constants in the
form of decimal, octal and hexadecimal numbers. Examples of integer constants are- 550
(Decimal), 043 (Octal), 0xA3(Hexadecimal).

2. Real Constants: Real constants are also known as-floating point constants. Any number with
fractional part is called real or floating point constant-This number may be preceded by the +ve or
-ve sign. A real constant can be written in decimal or exponential form. Examples of real constants
are-

Real constant in Decimal form is z 0.2569
Real Constant in Exponential fotm'is =~ : +2.64€3
The exponential form is used when'valtte is too small or too large. In this form, number is divided
in two parts-mantissa and exponent.”’Mantissa parts appears before ‘e’ and the exponent part is
after ‘e’.
Character Constants
There are two types of character-constants:
(1) Single Character Constants, and
(2) String Constants¢

1. Single Character Constants: These constants must be enclosed within single quote. It can either

be a single alphabet, a single digit or a single special symbol. Example of character constants are-
v, ‘2, “* etc.

2. String-Constants: The combination of characters is called a string. Any string may consist of
alphabets, digits and symbols. The string must be enclosed within double quotes. Example of string
constants are- “Param Kansal”, “Phone no. 9501010979” etc.

Constant Declaration:

Te,define the constant we use const keyword. Its syntax is:

const<data type><constants name>;
For example;
const float pi=3.14;

The alternative method of declaring constants is Symbolic Constants. For this, ‘#define’ preprocessor

directive is used.

For Example:

#define PI 3.14
#define MAX 100

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

DATA TYPES:
Data type is the type of data to be stored in the main memory. C language is rich in data types. The
Data types in C language can be classified as-

o Primitive Data Types, and

o Non-Primitive data types
Primary Or Primitive Data Types
These data types are predefined in the compiler of C. These data types are also known as fundamental
or built-in data types. These data types are: int, float, char, double and void. All C compilers suppért
these data types. We can classify these data types into Integer, Real and void types.

| Primitive Data Types |

| Integar | Rea | | wioid

char l int I float I| douldé
Figure: Primitive Data Types

Following table shows required memory size and the range of values of these‘data types.

Data Type Size Value Range Range in Decimal Description

char 1 Byte -27to0 27-1 -128 to 127 Stores character value
int 2 Bytes | -215to 215-1 -32768 to 32767 Stores integer value
float 4 Bytes | -231to 231-1 3.4x10-38 to 3.4x10+38 Stores fractional value
Double 8 Bytes | -263to0 263-1 1.7x10-308 to 1.7x10*308 Stores fractional value

Table - Size and Range of Basic Data Types in C
char data type:
It is used to store the character data. It takes one byte;meniory to store value. Its value range is -27 to
27-1. The range in decimal is -128 to 127. Following\program show how to use it:
void main()

{
char ch="A’;
printf(“%d”,ch); #/shows 65 (ASCII code of A)
printf(“%c”,ch); //shows A
}
int data type:

It is used to store the integerdata. It takes two bytes memory to store value. Its value range is -215 to
215-1. The range in decimal -32768 to 32767. Following program show how to use it:

void main()

{

int a=65;

printf(“%d”a); //shows 65

}
float data type:
It is used to-store the single precision fractional data. It takes 4 bytes memory to store value. Its value
range'is -231 to 231-1. The range in decimal 3.4x10-38 to 3.4x10+38, Following program show its use:

void main()

{

float a=6.5;

printf(“%f”,a); //shows 6.500000

}
double data type:
It is used to store the double precision fractional data. It takes 8 bytes memory to store value. Its value
range is -263 to 263-1. The range in decimal 1.7x10-3%8 to 1.7x10+308, Following program show how to
use it:

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

void main()

{

double a=6.5;

printf(“%lf”,a); //shows 6.500000

}
Void type
The void type has empty or null value. This data type is commonly used with functions. Those
functions which do not return any value, have void type.

NON-PRIMITIVE/SECONDARY DATA TYPES

Those data types which are not inbuilt in C, are called non-primitive data types. These datd'\types are:
derived, user-defined, and pointers.

Derived Data Type

Those data types which are derived from the basic data types are called derived(data‘types. Arrays,
Structure and Union are the derived data types.

User-Defined Data Types

These data types are defined by the user. The ‘enum’ and ‘typedef are usedor this purpose.

Pointers

Pointer is a powerful feature of C language. Pointers are used to store’the memory address of a
variable.

OPERATORS AND THEIR TYPES

Operators are the symbols used to perform specific operations, For example, + operator is used to
perform addition operation, > is used to compare values etc. The€se operators perform their operation
on the operands. Operands are the identifier on which“eperation is performed. Based on the operand,
operators can be classified as:

Operators
Unary Binary Ternary

Fig: Types of Operators based on Operands

Unary Operators:
Those operators which require one operand to perform their operation are called unary operators.
Examples of these operatorsare: ++, --, letc.

For exampleya++, --b
Binary Operators:
Those operatars which require two operands to perform their operation are called binary operators.
Examples ofithese operators are: +, -, *, %, &&, > etc. Most of the operators in C are Binary operators.

For example: a+b, a>b
Ternary Qperators:
Those_operators which require three operands to perform their operation are called Ternary
operators. This operator is also called Conditional Operator. Example of this operatoris: __?
This’is the only ternary operator in C language.

For Example: big=a>b?a:b;

Operators can also be categorized according to their operations. They can be categorized as below.

1.) Arithmetic Operators. 5.) Increment/Decrement Operators
2.) Comparison Operators 6.) Bitwise Operators

3.) Logical/Boolean Operators 7.) Conditional Operators

4.) Assignment Operators 8.) Additional Operator

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

ARITHMETIC OPERATORS:
These operators are used for arithmetic operations. These are five operators. These are +, -, *, / and %.
All these are binary operators. Following table shows the operations of these operators:

Name Operator Description Example
Addition + Used to perform Addition of 244 => 6 2.0+4.0 =>6.0
numbers.
Subtract) Used to perform sub.tractlon or 6-2 => 4 6.0-4.0=>2.0
used as any unary minus.
Multiply " Used to perform multiplication 7%9 =5 14 70%2.0 =>14.0
of numbers.
L Used to perform division of 5/2=>2 5.0/2.0=>2,5
Division / L p—
numbers. Integer division Real Division
Used to get remainder value 5.0%2.0
0, 0, =
Modulus & after division of numbers. 7%04=>3 Not allowed
RELATIONAL OPERATORS:
These are also called comparison operators. These operators are used for'comparing values. These
are 6 operators. These are >, <, >=, <=, == and !=. All these are binary operators.Following table shows
the operations of these operators:
Name Ope:ato Description Exa;npl Result
Used to check whether ‘two | 4== False
Equal to ==
values are equal 5== True
Not Equal to . Used to check whether two | 4!=5 True
1] values are not equal 4! =4 False
Used to check whether first value 4>5 False
Greater then > .
is greater than\second 5>4 True
Less then < Used to check Whether first value 4<5 True
is lass thensecond 5<4 False
Greater than Used tocheck whether first value st True
>= is greater than or equal to second
or equal to 6>=8 False
value
Less than or Used to check whether first value he=s True
<= is lesser than or equal to second
equal to value 4<=2 False

LOGICAL OPERATORS

These are also called Boolean Operators. These operators are used to form compound relational
expressions. These operators are also used to compare values. These are 3 operators. These are &&
(AND), || (OR).and! (NOT). AND and OR are binary operators and NOT is unary. Following table shows

the operations of these operators:

Name Operators Description Associatively Example Result
Return true if both 3>5 && 4>5 False
operands are true . 3>5 && 4<5 False

AND && otherwise returns false Left to Right 3<5 && 4>5 False
3<5 && 4<5 True

Return true if at least 3>51| 4>5 False

one operand s are true . 3>5 || 4<5 True

OR || Left to Right 3<5 || 455 True
3<5]]4<5 True

T | Return true if operand Rioht to Lef 1(3<5) False
NO : is false & vice - versa 1ght to Left (3>5) True

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

ASSIGNMENT OPERATORS
These Operators are used to assign/store values in a variable. The symbol of assignment operator is
’=". Consider the following examples which show how to use assignment operator in C programs:

a=-2; // assigns -ve value (-2) to the variable.
b=75; // assigns value (5) to the variable.

c=a+b; // assigns the result of expression to the variable.
a=a+10; // self-assignment of a variable.

Assignment operators can also be used as shorthand operators. Shorthand assignment operators dre
useful in self-assignment statements. Following table shows the examples of shorthand operators
used in C:

Shorthand Example for Equivalent
Operator Shorthand Assignment Self-Assignment
+= a+ =2 a=a+2
-= a-=2 a=a-2
= a=2 a=a*2
/= a/=2 a=a/?2
%= a%=2 a=a%2

Table - List of Shorthand Assignment Operands
INCREMENT AND DECREMENT OPERATOR
These are unary operators. They require only one operand. In C, ++"is the increment operator and ‘--'
is the decrement operator. Increment operator adds one to_the\current value while the decrement
operator decreases one to the current value.
Consider the following example:

inta=5b=6;
a++; //abecomes 6
b--; //becomes 5

These operators can be classified into two categories. These categories are named as:
e Prefix Increment/Decrement operator, =-(++a/--a)
e Postfix Increment/Decrement opérater.” (a++/a--)

CONDITIONAL OPERATOR
It is the only ternary operator used in c language. It requires three operands to perform its operation.
This operator is used to carry_out conditional operations. It can be used in place of if - else statement.
The syntax for conditional Operator is:
Condition?ExpresSion1 for True Condition:Expression2 for False Condition

Example of Ternary Operator:

int x, y, big;

x =100;

y=15;

big = x>y ?x:y;

EXPRESSION
An expression is the valid combination of operators and operands. Here, operands may be a variable
ohit €an be a constant. Consider the following example:
c = a+b;
a=c+10;
Here ¢, a,b, and 10 are the operands and + and = are the operators. Expressions can be categorized
according to the operators used in the expressions:
1. Arithmetic Expressions
2. Relational Expressions
3. Logical Expressions
4. Mixed mode Expressions

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

1. Arithmetic Expressions
When Arithmetic operators are used in an expression, itis called as Arithmetic Expression. This
expressions return numeric value. For Example:

c=a+b c=a*b etc.
2. Relational Expressions
When relational operators are used in an expression, it is called as Relational Expressions. Relational
Expression returns either True (non zero value) or False (zero value). For example:

a>b a== 5>=2 etc.
3. Logical expressions
When logical operators along with relational operators are used in the expression, then “the
expression is termed as Logical Expression. Logical Expression also returns either True or Fals€ value.
For example:

(a>b)&&(a>c) (@a>b) || (b>c) '(a>b) etc.
4. Mixed mode expressions
When an expression contains more than one type of operator, it is called mixed-mode‘expression. For
example:

(a+b) >= (c*d)
HIERARCHY OR PRECEDENCE OF OPERATORS IN EXPRESSIONS
An expression may contain more than one type of operators. In such, situation, which operator is
evaluated first?, is decided by the hierarchy of operators. The sequence‘of operators in which they are
applied on the operands in an expression is called the Precedence'of‘Qperators.
Consider the following examples which illustrates how expressions are evaluated using operators
precedence-

a=5*4/4+8-9/3; (*«issevaluated)
a=20/4+8-9/3; (/»is evaluated)
a=5+8-9/3; (/ is evaluated)
a=5+8-3; (+ is evaluated)
a=13-3; (- is evaluated)
a=10;

TYPE CONVERSION
When value of one type is converted into,other type, it is called Type Conversion. There are two types
of type conversions.
(1.) Automatic Conversien or Implicit Conversion
(2.) Casting Value or/Explicit Conversion.
Automatic/Implicit Copversion:
This type of conversian is adtomatic. For this type of conversion, we use assignment (=) operator. It is
also called impliciticonyersion. This type of conversion is used when lower data type operand is
converted into higher*data type. There is not loss of information in this type of conversion.
Consider thefollowing example for automatic conversion:
intm = 15;
floatn = m;

Casting a'value or Explicit Conversion
This is forceful conversion. For this type of conversion, we use caste operator. It is also called explicit
conversion. There may or may not be any loss of information in this type of conversion. This type of
conversion is used when higher data type operand is converted into lower data type.
The syntax for this type of casting is:

(Desired data type) Expression
For example:

float m;

intn=7;

m = (float)n/2;

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

CONTROL STATEMENTS:
Flow of execution of program is sequential by nature. To control this execution flow, we use control
statement. So, we can say that those statements which are used to control the execution flow in a
program are called Control Statements. These control statements can be categorized into three
divisions:

1. Conditional / Branching / Decision-Making Control Statements.

2. Looping or Repetitive Control Statements.

3. Unconditional Control Statements.

Control Statements

e

Branching Looping Saraplng
e ifstatements » forloop o Bireik
* switchcase » whileloop & cantinue
do whileloop e Boto

Fig: Classification of Control Statements

BRANCHING CONTROL STATEMENTS

These statements are used for decision making purpese. These are also called conditional or
selection or decision - making control statementsy’C’language supports the following Branching
Control Statements:

i. The ‘if else’ statements.

ii. The ‘switch case’ statement.

If else statements:
If else statements can be used in the four different ways:
e Only if statement
e Ifand else statement
e elseifladder statement
e nested if else statement

If statement:

It is a branching statement. It is used for decision making purpose. If the given condition is true, it will
run the statement otherwise do nothing.

Consider the,following example and its syntax:

Syntax: Example:
#include<stdio.h>
if (Conditional Expression) ":'3'1‘1 main()
Statement: -~ .
int a, b;
: . Or . a=10;
if(Conditional Expression) b=10:
{ if (a==b)
Statements: printf(“Both numbers are equal”);
} }

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

If and else statement:

It is a branching statement. It is used for decision making purpose. If the given condition is true it will

run the statements1 otherwise it will run the statements2, as shown below in the example:

Syntax:
if (Conditional Expression)
{
Statements]:
}
else
{
Statementsl:

Example :
vold main{)
{

int a, b;
a=10;

b=20;

if (a==hb)

printf (“Both numbers are equal”);
else
printf (“Numbers are not equal”);

} }

Else if statement:

It is another form of if statement. It is also used for decision making purposewlt is used when we have
to test multiple conditions. It is a chain of many if else statements. It executes the first true condition.
If no condition is true, it will execute the last else statement. Consider the following syntax and

example:

Syntax:

ifiConditional Expressionl)
Statementl;
else if {(Conditnonal Expression2)
Statement?;
else if

else if {{Conditional Expression n)
Statement n;

Example :
wvoid maini()
{
float per:
per=65:
if (per>=75)
princt (“Grade - A"):
else if (per>=60)
printf (“Grade - BY):
else if (per>=40)
printt (“Grade - C¥);
else
princt (“Grade - D) :

Nested if else statement:

It is another form of bramehing statement. It is also used for decision making purpose. It is used to test
multiple conditions. When,one ‘if else’ statement is used within another if-else statement, it is called
Nested if else statement, Consider the following syntax and example:

Syntax: Example :
if{fConditional_Expression) 'E’ﬂ' id main()
{ . . int a=5, b=8, c=&:
ifiConditonal Expressionl) if (a>b)
Statement; {
else if (axc)
Statements; pEintf(TA 15 lacgest™):
} elase
princt (*C i= largesc™):
else)
{ else
ifiConditonal Expression2) {
Statements; if (b>c)
else peinct (B i= largestc™):
Statements; sise = .
printf(*C iz largest™):
¥)
}

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

Switch case:

It is another branching statement. It is also used for the decision making purpose. It is like else if
statement. It is used to test multiple conditions. It is used when we have to test a variable or
expression against a limited set of constant values. It is used to test integer type operands only.
Consider the following syntax and example:

Syntax: Example :
switch {expression or vanable) void main()
{
{ ; char ch;:
case valuel cha? ir
Statementsl switch (ch)
break {
case value2 case ‘a’:
SrATEMEnts? printf (*a i= a vowel”):break;
bre ak Bame e
o printf(™e iz a vowel”):break:
case ‘i':
princf (™1 i3 a vowel”) :break:
case value n case ‘o0°:
Statements n printf (™o iz a vowel”) ;break;
break case ‘u’:
) printf(™u is a vowel”) :break:
default: default:
statements printf (*Not a vowel”):
1)
)

In switch case, expression or variable is matched with each/Case value. When a match is found, the
corresponding block of case is executed. If not case matehes with the variable’s value, default
statement will be executed.
LOOPING STATEMENTS:
These statements are also called iterative statements. These are used for repetitions. C provides
three types of iterative or looping control structures:

a. The ‘for’ loop.

b. The ‘while’ loop.

c. The ‘do while’ loop.
Any looping control statement, in general, would consist of the following components:

e Initialization - It is thesstarting value of counter variable

e Test condition - it isthe end value of the counter variable.

e Iteration - Inereases or decreases the value of counter variable.
e Body ofloop =, |These are statements to be executed repeatedly.

Looping control structures may be classified as -
A. Entry - Controlled loop (Pre-Test Loop), and
B. Exit - Controlledloop (Post-Test Loop).
ENTRY CONTROLLED.LOOPS:
In the entry-controlled loop, the control conditions are tested before the body of loop. The ‘for’ and
‘while’ lgops,are the entry-controlled loops
For loop:
It is a looping control statement. It is used for repeating statements. It is entry controlled loop in
which control conditions are tested before the body of loop.

Swntax: Example :
’ void main ()
for (initialization; test-condition,; iteration) int i»
{ for(i=1; i<=10; i++)
Body of the loop; {
3 printf (“\nkd”, i);

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

While loop:

It is a looping control statement. It is used for repeating statements. It is entry controlled loop. In this
loop condition is tested before the statements (body) of loop.

Syntax: Example :
vold main()
nitialization :
int 1:
while {condition) i=1; //initialization
{ vhile (i<=10) fftest condition
Statements {
Teration princt ("\nxd",1i): //statement
1 i++; ffiteration

EXIT CONTROLLED LOOP:

In the exit-controlled loop, the test condition is performed after the body of the loop: Therefore, this
loop must execute at least once, even if the condition is false initially. Do whil€loop is an example of
exit controlled loop.

Do while:

It is a looping control statement. It is also used for repeating statements. It is an exit controlled loop.

In this loop, condition is tested after the body of loop. So this loop must'execute at least once.
Syntax: ESCENELY ¢

volid main()
i

nitialization int i:
Leln i=11;
Ir do
Statements (
paratioe printf{™nkd”,1)

144

1 while {condition) ywhile (i<=10) :

NESTING OF LOOPS
When a loop is used within another loop, It is termed as Nesting of Loops. We can put any loop within

another loop. For example, we can put a ‘for’ loop in another ‘for’ loop or a ‘while’ loop etc. Consider
the following syntax and example:

Syntax: Example:
—* for(initialization; condition; iteration) void main()
{
: ""I" . e e B " Y int 1,7
E . forfininalization; condition; iteération) for (i=1:1i<=10: i++)
< gt (
E i Statements Lor (J=1:j<=5;)++)
T
- } i
s AN fERY s
Statements ?rmcr(Vesd™, 173) ;
e }

peintf ("\n");
1
}

COMPARISON OF WHILE AND DO-WHILE LOOP
The comparison between ‘while’ and ‘do while’ statements is as follow:

1. In ‘while’ loop, the condition is tested before execution of the body of loop. But, in ‘do while’
loop, the condition is tested after execution of the body of the loop.
2. The ‘do while’ loop must execute at least once even if the condition is false initially. But the

‘while’ loop may not execute if the condition is not satisfied initially.
While loop is entry controlled loop and do while loop is exit controlled loop.
4. The ‘do while’ loop is followed by the semicolon (;) but in the ‘while’ loop, it is not given.

w

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

JUMPING STATEMENTS

These statements are used to jump the execution control from one to other part of the program. These
are also known as skipping statements. These statements are goto, continue and break:
The ‘goto’ statement: It is a jumping statement. It transfers the control at the defined location.

Location is defined by the label. It can use either the forward jump or backward jump, as shown in the
figure.

Statements Statements
— goto label; label: *+
Statements Statements
—» label: goto label;
Statements Statements
Syntax: Forward Jumping Syntax: Backward Jumping
Consider the following example:
Example : Out put
vold main()
{
inc i=1; N
//label for goto statement 4
start:
printcf ("sd"™,1): .
i4+: i
if (1<=5) 5
goto start;
}

The ‘break’ statement: It is a jumping statement. It takes the control out of the control statement in
which it is used. It is widely used in switch statement.

Following example shows the use of break statement in a loop.

Example: Qutput
vold maini)
{
int i:
for (i=1l:1i<=10; i++)
i

B

if (i==5) {
break: 3
}
printf (M“\n¥d”, i) :
H

y }

The ‘continue’statement: It is a jumping statement. It takes the control to the next iteration in the
loop. It isused.in loops.

Following program shows how to use ‘continue’ statement

Example:

Output

void main() “
{ 1
int i; 2
for (i=1:1<=7:1++) 3

{ 5

if (i==5) '

{ L]

continue ;

}
princt (™Yynkd”,1) ;
H
}

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

FUNCTIONS:
A function is a subprogram. It is also called routine or procedure. It is a logical grouping of instructions in a
program. Functions are used to break a complex problem into a small parts or modules. They can be used
multiple times, but defined only once. Every executable program must have a main() function. The main
function is an entry point of execution of the program. The main() function invokes the other functions to
perform various tasks.
ADVANTAGES OF FUNCTIONS:
Using functions have a number of advantages. The main advantages of using a function are:

e [t becomes easy to solve a complex program by dividing it into small functions.
It becomes easy to debug the program.
It is easy to maintain and modify a function.
It can be called any number of times but defined only once.
Small functions are self-documenting.
It facilitates top-down modular programming approach as shown in the following.figure.

\\

Figure: Functions

TYPES OF FUNCTIONS:

Functions can be classified in two categories:

1. Library/Standard Functions: Those functions, which are in-built or pre-defined in the C language, are
called standard or library functions. All these functions are organized in header files. So to use any
predefined functions, we must include the corresponding header file in which it is used. For example:
clrscr(), printf(), scanf(), sqrt(), strcpy() etc.are'the predefined functions.

2. User Defined Functions: Those functionsy which are defined by the user, are called user defined
functions. User can define his own functions to fulfill his requirements. Function main() is the best
example of user defined function.

FUNCTION DEFINITION:

Function definition defines the wotking of the function. It has a function type, name, parenthesis with zero

of more arguments, and a body{_The general format of the function definition is given below:

functiontype functionname-(arguments)
{
body of the function
retykn'statement,
/

In the above syntax, functiontype shows the type of value it would return to calling function. A function may

or may notaeturn’a value to the calling function:

e _Those functions which do not return a value are of void type. For example: clrscr() function does
not return a value.

¢ “Those functions which return a value to its calling function are called return type function. A
function may return int, float, char etc. value. For example, sqrt(9) function returns the square root of
the given number.

Arguments to the function are optional. It means there may be zero or more arguments. These arguments

pass information to the function. These arguments are used in the body of the function.

Thus, user defined functions can be defined in four different ways. These are:

1. void type without arguments

2. void type with arguments

3. function returning values without argument
4. function returning values with argument

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

FUNCTION PROTOTYPE/DECLARATION:
A function prototype is a declaration. It declares a function and its type. Whenever the function is called, it
is checked with its declaration/prototype. Function is declared when a function is called before its definition.
FUNCTION CALL:
To use a function, it must be called. When we call function, we use functionname with actual arguments.
Consider the following syntaxes:
functionname(values); //used to call a void type function
var=functionname(values); //used to call a return type function
Following program example shows the function declaration, definition and call

void sum(int a, it b); // function prototype or declaration
void main()
i

'..1d‘:_|...|_.. &=y
sum(5,7); /function call

Formagl Arguments

void sum(int a, int b) //function definition

int s=a+b;
printf("%d",s);

[

ACTUAL AND FORMAL ARGUMENTS:
Arguments to the function are optional. It means there may be zerd*er_more arguments. These arguments
pass information to the function. These arguments are used in the’body of the function. These arguments are
of two types:

e Formal arguments void sum(int a, int b); // function prototype or declaration

vold main()
e Actual arguments/Parameters f

Formal Arguments:)) | sum(5,7); //function call
These arguments are passed in the function\| .
definition. They are also called as dummy, | void sumiint a. int b) /function definition
arguments. i

Actual Parameters: int s=a+b;

These arguments are passed during function-call. Flf'r'mf"'%d"ﬁ}i

These arguments may be variables or values. .

Retusl Arpumanty

Formal Argumentt

Following program shows these types of arguments:
SCOPE RULES:
A scope is an area of the program"where a defined variable can be used. Beyond that area, variable cannot be
accessed. Declaration place of & variable decides the scope of a variable. There are two types of scopes for
variables in C: Local Scope and Global Scope
Local Scope:
Those variables which are declared in the body of the function are of local scope. They can be used only
within the function. They cannot be used outside the function body. Formal arguments also have the local
scope.
GlobakSecope:
Those=varsiables which are declared outside all functions are of global scope. A global variable can be used
by amyfunction in the entire program.
Censider the following program. It shows the local and global variables.
#include <stdio.h>
int g; /! global variable declaration
void main ()
i
int a; /Mocal variable declaration
a=10;
gE=a"%a;
printf ["%d", g);
}

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

PASSING PARAMETERS TO FUNCTIONS:

Parameters can be passed to function in two ways - by value and by reference, which are called ‘call by

value’ and ‘call by reference’ respectively.

DIFFERENTIATE BETWEEN CALL BY VALUE AND CALL BY REFERENCE:

Call By Value
1. The formal and actual parameters are two different

variables.

2. The formal parameters must not be preceded by address
operator (&).

3. When the value of the formal parameter is changed, the
corresponding value of actual parameter is not changed
automatically.

4. Actual Parameter is read only.

5. Actual Parameter may be a constant, a variable, or an
expression.
6. intx;

Call By Reference

1. The formal and actual parameters are same, though their
names may be different.

2. The formal parameters must be preceded by address
operator (&)

3. The value of formal parameter automatically changes
when the value of actual parameter is changed.

4. Actual parameter is read - write.

5. Actual Parameters must be a variable.

6. int &x;

RECURSION/RECURSIVE FUNCTIONS:

wvoid swaplint X, intyl J/funcion definition
|
int temp
Temp=x
-y
¥ =lemp
yoiud main |
|
inta=5,b=7
swap(a, b] fffunction call
panthyntad L a)
printf{™yn%d”, b)
void swaplint *x, int *y) /function definition
|
Nt TErmp.
emp="x
=
"y=temp
woid maing |
i
int a=5, b=7
swap(&a, Eb) ftunction call
printf{™n%d”, a)
prirf{"\n%ad”, b

A function which calls itself again and againsis known as recursive function. Recursive functions are very
useful while working with data structures=like” linked lists, trees etc. Consider the following example. It

calculates the factorial of the given number using recursive function.

lorg factlong n)
voild maind |
i
]
Nt X N
n=4
¥ =factin) Jfunction call
printf(”ynd’

|
long factlong nt n

Jfunction declaraton

Jirecursive funciion definmmon

INPUT AND OUTPUT:

C provides many functions for standard input and output. These functions are defined in a header file.
This header file is stdio.h (standard input output header file). To use these input/output functions, we

have to include header file in our program:#include<stdio.h>

Here, #include is the preprocessor directive and <stdio.h> is the header file.

C supports two types of I/0 functions:
e Formatted functions
e Un-formatted functions

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C
FORMATTED FUNCTIONS:
The printf() and scanf() are the formatted functions. We can format the input and output using these
functions. Using these functions we can input and output any type of data in the program. These
functions use formatting codes for input and output. Commonly used format codes are given in the
following table:

Format Code | Description of the format code
%d It is used for int type
o6ld It is used for long type
%f It is used for float type
Yolf It is used for double type
O%c It is used for char type
Dos It is used for string type

Table: Format codes

The printf() function:
The printf() function is used for outputting any type of data on Screen/Console. This function uses
format codes, like %d, %f, %c, %s, etc. to format different data types. Use of format code depends on
the data type of the variable to be displayed.
The general syntax for the printf () function is:
printf(“Message........ "); OR
printf (“Format codes”, argl, arg2,.......J;
Following examples show how to use printf () function using different Format strings -
Example 1: printf (“Vikas Kansal”); //displays Vikas Kansal
Example 2: int a=5;printf (“%d”, a); //displays 5
To format output, we use the field-width and the format-flags in the printf() function. The general
syntax for this is as below:
printf (“%<format flag><field width>format code”, argument);
The commonly used format flags are:

Format Flag | Example | Description

-(minus sign) | "%-d" It is used to force the value of variable to be left aligned.
By default, value of variable to be displayed is aligned
right.

0 (zero) "0605d" It is used with Numeric type variables, ie. int& float. By

using this flag, it is possible to pad the displayed value
with zeros in the leading blanks.
Table - Commonly used Format Flags

Consider the Following Examples:
1= o =114

The scanf()function:
The scanf() function is used for inputting any type of data during runtime. This function uses format
codes;like %d, %f, %c, %s, etc. to format different data types. Use of format code depends on the data
type‘ofithe variable to be input.
The-general format for scanf() function is:
scanf(“Format codes”,&argl, &arg?,);

Example for scanf() function is:

int a, b;

float c;

scanf(“%d %f %d”, &a, &c, &b);
The ampersand ‘&’ symbol before each variable name is an operator. It specifies the address of the
variable in the main memory.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

UNFORMATTED INPUT/OUTPUT FUNCTIONS
Unformatted 1/0 functions are used for string and character type data. Following table shows the
various I/0 unformatted functions used in C:

Unformatted 1/0 functions | Description

getch), getche(), getchar() | Used for single character input
putch(). putchar() [Used for single character output
gets() - Used for string input .
puts() Used for string output

Table - Unformatted Input /QOutput Functions in C
CHARACTER 1/0 FUNCTIONS:
Character input and output functions are defined in the conio.h (console input output) headerffile. So,
to use these functions, we include conio.h file in the program.
The getch() function: The getch () function accepts a single character from the keyboard, But it does
not display it on the screen. After typing the character, there is no need to press(the “Enter’ key. Its
syntax is:

char_variable=getch();
The getche() function: This function is also used to read a single charactek, from the keyboard at the
console. It displays the character entered by the user at the console. Thé,character ‘e’ in the getche ()
function means ‘echo’ (displays). Its syntax is:
char_variable = getche ();
The getchar () function: This function is also used to read a single character from the keyboard at the
console. This function accepts the character data and waits for the *Enter’ key.
char_variable = getchar’();

Following table shows the comparisons between the geteh=(+), getche () and getchar () functions:

| Name of the Function | Echo Character | ‘Enter'Key
getch () No No
getche [) Yes No
getchar() Yes Yes

The putch () and putchar () functions areused for single character output. The syntax for using these
functions is as follows:

putch (char_variable); putchar (char_variable);
Consider the following program:

vold main()
{

| char ch;
peintf (*\nEnter any character ")
ch=getchar ()
printf ("\nEntered character is "):

putchar (ch) ;
1

STRING INPUT/OUTPUT FUNCTIONS
The gets() and puts() are the unformatted input/output functions. These functions are used for the
string typesdata’ These functions are defined in the stdio.h file. So, we have to include this header file.
The gets(,) function is used for unformatted string input. Using this function, we can input a string
including-spaces. The syntax for using this function is as follows:

gets(string_variable);
The-puts () function is used to display the unformatted string at the console. The syntax for using this
function is as follows: puts (string_variable);
Following program shows the use of these functions:

vald main()

char ch[20];

printf (" nEnter your name"”);

gata (ch)

printf{"\nHelle Mr./Misa/Mr=. "):
puts (ch) ;

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C
Section B

STORAGE CLASSES:

Storage classes are used to define the scope, life and location of a variable in the program. In C, four

storage classes are used to define scope, life and location of variable. These are:

1. Automatic Variables
2. Register Variables
3. Static Variables

4. External Variables

These classes are used during the declaration time of variable. We can say that storage classes define

how the memory reference is carried out for a variable.

Automatic Variables:

These variables are also called Internal or local variables. The keyword auto is used<to. défine this

storage class. If we do not define any storage class, the default is auto.

Scope: Its scope is limited. They can be used only within the function(in.which they are
declared.

Life: Their life time is small. They remain in the memory till the function"€xecution.

Location: These variables are stored in the main memory (RAM).

Static Variables:

Static variables are defined within a function. The keyword static is used\to"define this storage class.
Scope: Its scope is limited. They can be used only within\the function in which they are
declared.

Life: Their life time is long. They remain in the memory till the program execution.
Location: These variables are stored in the main memory (RAM).

Register Variables:

Automatic variables are stored in the main memory (RAM). Accessing a memory location takes time.

So, to speed up the processing, some variables ‘¢an'‘also be stored in the registers of CPU. Those

variables which are used frequently in the progtam, they can be stored in the registers. The keyword

register is used to define this storage class.
Scope: Its scope is limited. They eanybe used only within the function in which they are
declared.
Life: Their life time is small. They remain in the memory till the function execution.
Location: These variables are Stored in the registers of the CPU.

External Variable:

These variables are declared \outside any function. They can be used anywhere throughout the

program. The keyword eXtern/is used to define this storage class.

Following programs show how to use these storage classes with their output:

Example for auto: Example for static: Example for register: Example for extern:
void count() void count() void count() void maind)
{ { {
auto int a=0; static int a=0, register int a=0
u++_ QH_ =
{ printf{"9%d".4), pringfi % d’, 8, printfi*%d”,a); xtem int
} } }
| void main) void main) void main() printf("3d",a)
K : {
cournt(); courd(); courd();
count(); courd(); court() .
] I } i -
Lutput Lutput Lutput Lutput
1 1 1 5

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

ARRAY:
An array is a homogeneous collection of values. It means an array can store more than one value of
same data type at a time. It is an ordered and finite set of elements. Memory allocation to array is
static. We cannot change its length during runtime. A contiguous block of memory is allotted to array.
They are of two types;

1. One Dimensional Array 2. Multidimensional Array

ONE DIM ARRAY:

Those arrays which require one index/subscript to access its value is called one-dim array. “Fhese
arrays are also called Vectors or Linear Array. These arrays have one dimension only -a single rew
or a single column. Smallest index of array is known as Lower Bound (LB). In C, it is alway$\0. Largest
index of array is known as Upper Bound (UB). It is always equal to length - 1. Consider the following
figure of one-dimensional array.

Lower Bound (LB Upper Bound (U8
-\". .-‘j...
y B n”
A [T T 11
- Fig Adray
Name of Array

Declaration of One Dim Array:
Before using arrays, we have to declare them. Following syntax is used«to’declare one dim array:

datatype arrayname[length];
For example:

inta[10];
Here, int is the data type of the array, a is the name of array, and 10 is the length of array. This array
can store 10 integer values. Length of array must be constant.
One Dim Array Initialization:
Like the variables, arrays can also be initialized«lt hasthe following syntax.

Datatype arrayname[length]={val1l, val2, val3,.......... b
For example:

inta[5]={5, 4, 8, 19, 10};
READING VALUES INTO ONE DIM ARRAY:
We can store values into one dimensional array during design time and run time. To store values
during design time, commonly we initialize the array. Storing values into one dimensional array
during runtime is called readingwvalues into array. For this, we use the loop to input all values of array.
In the loop, we use inputfunctions to read the values one by one. Consider the following example:

int a[5];

for(i=0;i<5;i+#)

{

scanf(“%d”, &ali]);

}
In the above code, we use scanf() function to read values of one dimensional array one by one using
the forloep.

DISPLAYING ONE DIM ARRAY CONTENTS:
To display all the contents of array, we use loops. Output functions are used to display the contents in
aloop. Consider the following example:

for(i=0;i<5;i++)

{

printf(“%d”, a[i]);

}
In the above code, we use printf() function to display the contents of array one by one using the for
loop.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

Following program shows how to work with the one dim array.

[/Program to sort the one dimensional array values
vaid main()

int a[S]={45,34,18,7 90 rray initialization

inti, §. temp
J/nested loop to sort the one dimensional array
for{ i=01<4 ; 14+)

[/if current value ks greater than next value then swap
|'|'|'- '|-]_'|

temp = afj
e aliel}
[i+1] = temp

{Noop to display sorted array values
prntf“nSort rmay is°)

fon(i =0i<S1++)

pont s \n ’ Ny

MULTIDIMENSIONAL ARRAY:

Those arrays which require more than one index/subsScript to access its valueare called multi-
dimensional array. They can be two-dimensional or three-dimensional. In two-dim arrays, we use two
index values and in three dim arrays we use three subseripts.

A 0 1 2 &—Colume Inden A 1 = : -
- | |] 5 2z !
D| 5 7 6 o_0 _ .

3 “+ . : { -
1| 3 2 4 | 6 13
3 b

2| 8 1 3 o A 4

A ‘ 2| 8 1 3

Fora lnde ’ -
Fig 1D Array Fig 3D Asray

TWO DIMENSIONAL ARRAYS:
Those arrays which require two index/subscripts to access its value are called two-dimensional array.
They are also.called matrix or tabular array. These arrays have two dimensions - rows and columns.
Row index and column index begins from 0. Before using arrays, we have to declare them in C.
Two Dim/Array-Declaration:
Following.syntax is used to declare one dimensional array:
Datatype arrayname[rows| [columns];
Forexample:
inta[3][2];
Here, int is the data type of the array, a - is the name of the array, 3 is the numbers of rows in the array,
2 is the number of columns in the array. This array can store 6 values.
Two Dim Array Initialization:
Like the variables, arrays can also be initialized. It has the following syntax.
Datatype arrayname[rows] [columns]={ {vall1,vall2, ...}, {val21, val22,......}, ... };
For example:

inta[3][2]={{5,2},{6,4}, {8,9} };
IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

READING VALUES INTO 2D ARRAY:
We can store values into array during design time and run time. To store values during design time,
commonly we initialize the array. Storing values into array during runtime is called reading values
into array. For this, we use nested loop to input all values of 2D array. In the loop, we use input
functions to read the values one by one. Consider the following example:
int a[5];
for(i=0;i<5;i++)
{
for(i=0;i<5;i++)
{
scanf(“%d”, &ali]);
}
}
In the above code, we use scanf() function to read values of 2D array one by one using.the nested for
loop.

DISPLAYING 2D ARRAY CONTENTS:
To display all the contents of 2D array, we use nested loops. Output functions-are used to display the

contents in a nested loop. Consider the following example:
for(i=0;i<5;i++)

{
for(i=0;i<5;i++)
{
printf(“\t%d”, a[i]);
}
printf(“\n”);
}

In the above code, we use printf() function to display the contents of 2D array one by one using the
nested for loop. It shows the contents in the matrix form.

Following program shows how to use 2D™array:

JfProgram to multiply two 2D Arrays/Matrix
void main()
{
int a[2][2)={ {21}, {3.4 may initialization
int b[2][2]={{2.1 1.3 ray initialization
int c[2][2]={{0.0}. {0.0}}. 1. 1. |
[/nested loops to multiply two matrices
for (1=l <2;i++)
tar (j=0; 12 j++)
forik=0:k<2:k++)

cliltil=clilfil+alilfk)* bk}

/Noop to show 2D array in matrix form
printf“Multiplication of matrix: ™)
far (I=Dic=21++)

tar (|=0;j==2,1++

printf{™*d\t" c[il[il)

printfi*™yn")

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

STRING:
It is a combination of one or more characters. It is enclosed in double quotes. They are terminated by
null character (\0) in c. To store string in c, we use char array. In C, char arrays are considered as a
whole during input output. It means we need not to use loops for input output a string. We can
perform many operations on string using many built-in functions. These functions are stored in the
string.h header file. Functions strcpy(), strrev(), strcat(), strcmp(), strlwr(), strupr(), strlen() are
commonly used on strings.
String declaration:
For strings, we use char arrays in c. So to store string, we declare character array. its syntax is:

char string_variable[length];
For Example:

char str[20];
Here, string variable str can hold the maximum of 20 characters in it.
String initialization:
Like other arrays, strings can also be initialized. It can be initialized in many ways. Consider the
following examples:

char name[10]= “Kansal”;

char name[10]={'K’,’a’,'n’, s’,’a’, 'I'};

char name[10]={'K’,’a’,'n’,’s’,’a’,’l’, \0’};

char name[|= “Kansal”;

char name|[|={'K’,’a’,'n’,’s’,’a’, T'};
We can use any one method to initialize a string or char array.
STRING 1/0O:
For string input output, we can use the scanf() afid=printf() functions respectively. In these,
functions, we use %s format code for string input andteutput. Consider the following examples:

char name[20]”;

scanf(“%s”,name); //for string input

printf (“%s”, name); //for string output
When we use scanf() for string input, we ‘do ‘not use & operator. But this function can store only a
single word string. We cannot store multiple word string using scanf() function. For this, we use gets()
function. This function is capable to store'multiple word string in C. Consider the following example:

gets(name);
Here if we store “New Delhi”;then,it can store this value. But if we use scanf() function, then it will
store only the word “New” in, the string variable.
Similarly, we can also useputs() function to display strings in C.
STRING HANDLING FUNCTIONS
There are many predefined functions which are used to manipulate strings, such as strlen(), strupr(),
strlwr(), stremp{Jmstrcpy()etc. These functions are defined in the string.h header file. So we must
include this file in our program to use string handling functions. Some commonly used string functions
are:

) strlen() - string length function

¥ strcpy() - string copy function

« stremp() - string compare function

s strrev() - string reverse function

% strcat() - string concatenation function
% strupr() - string upper function

s strlwr() - string lower function

The strlen() function:
Function strlen stands for string length. This function is used to count the total number of characters
in the given string. Following code shows how to use this function:

strlen(“punjab”); //it returns 6 as string length

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

The strcpy() function:
Function strcpy stands for string copy. This function is used to copy the one string value into string
variable. Following code shows how to use this function.

strcpy(str, “Punjab”);
It copy the string “Punjab” into the string variable str.
The strrev() function:
Function strrev stands for string reverse. This function is used to reverse the given string value.
Following code shows how to use this function:

strrev(“Punjab”);

It reverses the given string to bajnuP.
The strcat() function:
Function strrev stands for string concatenation. This function is used to combines the4waq strings. It
appends 2nd string at the end of first string. Following code shows how to use thisfunction. Let the
two strings are:

char str1[10]=“Sunam”;

char str2[10]="City”;

strcat(str2, strl);
It concatenates the second string into first string - CitySunam
The strupr() function:
Function strupr stands for string upper. This function is used to.convert the given string into Upper
case (i.e. in capital letter). Following code shows how to use this function:

strupr(“Punjab”);

It converts the given string into PUNJAB.
The striwr() function:
Function strlwr stands for string lower. This function’is-used to convert the given string into lower
case (i.e. in small letter). Following code shows how*to'use this function:
striwr(“PUNIJAB”);

It converts the given string into punjab.
The strcmp() function:
Function strcmp stands for string compare. The strcmp() function is used to compare two strings. It
returns one of the three possible values: zero, negative, or positive. For example:
If 1st string is equal to 2nd string, It returns 0
e.g. strcmp(“punjab”,“punjab”) returns 0
If 1st string is less than 2nd string, It returns negative value
e.g. stremp(“indid”,“punjab”) return -ve value
If 1st string is greater than 2nd string, It returns +ve value
e.g. strcmp(‘punjab”,”india”) return +ve value

Following program shows how to use strings in the program. This Program checks whether the given string
is palindrome er.not.

#Finchide<string h>

void main()

(]

1
char str1[10]="madam"; Initializing string variable
char str2[10]; declaring string
strepy(str2 strl); copving strl into str2
strrev(str2); reverses string str2
if (stremp(strl str2)==0) compare if two strings are same or not
printf{*string is palindrome™);
else
printfi*string is not palindrome™);

}

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

TABLE OF STRINGS:

Table of string is also called 2D character array or one dimensional string |[D|e|1|h|1]|\0
array. It is used to store more than one string value. For this, we have to |[p|u|n|j [a|b|\0
declare the two dimensional character arrays. Each row of 2D char array is [~ \0
used to store a string value. Consider the following diagram to show the -

. Bli|h|a|r|\O
concept of table of strings.

. . Fig: Table of
String Array/2D character array Declaration: AR

Table of strings is an array of strings. To create the table of strings, we have to declare the 2D array ef
characters as follows:

char states[4][7];
This array can store four strings. We can store the name of four states in this array. Each string\can be
of seven characters.
String Initialization:
Like other arrays, we can also initialize the string array. Consider the following example:

char states[4][7]={“Delhi”, “Punjab”, “Goa”, “Bihar”};
Accessing Table of strings:
To access the table of strings, we have to use a single loop. Consider thexfollowing example which
shows all the strings:

for(i=0;i<4;i++)

{

printf(“\n%s”, states[i]);

}
STRUCTURE:
Structure is another derived data types in C. Unlike array, a structure can hold data items of different
types under a common name. Thus, we can define structure as:

“Structure is a collection of heterogeneous data items”
In many computer languages, like Pascal, this type. of structure is referred as Record. Structures are
used to organize complex data in a more meaningful way.
HOW TO DECLARE/DEFINE A STRUCTURE
To define a structure, we have to use the“struct’ keyword. The syntax for defining a structure is as
follows:
struct structure-name {
Data-type data_item1;
Data-type data_item2

Data-type data_item_n;
J7
To access or use‘asstructure, we have to declare its variables. Using these variables, we can access the
data items of the structure with the help of dot/period ‘" operator. This operator is also termed as
‘memberselection operator’.

minclude<stdioh>

struct student //Defining structure

!
irtrodl_no {fData items of strucure
char name | 20]
float percentag

vioid main()
I
i
struct student 51 f{Creating varibale of strucure
prntf"Enter roll no, name and percentage marks ")
scanf{*%ed%s% " &slroll noslname &sl percentage): /[fAccessing strucure members
prntf ynRoll No %6d Name %5 obtamed %64, 21 V6 marks” s1oroll_nosl.namesl.percentape)

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

UNION
Like a structure, it is also a logical grouping of heterogeneous data items. The main difference between
them is that in union, only one data member is active in memory at a time while in case of structure all

the data members are active in memory at a time. To define a union in C, following syntax is used:

union union_name

{
data-type dataitem1;
data-type dataitem?;
Data-type dataitem_n;
J7

Here, ‘union’ is a keyword used to define a union, union_name is a valid identifier representing the
name of union and data-types are the types of data items of a union.

union student | Jfdetining union

int roll

char name |20

i

woid maing | §

union student sl J/oreating variable of structure
prirzf{"ynEnter roll number ")

scanf(™%d” Esl.roll) Jlaccessing union members
prinzf{"\nRoll no of the student is %ad” s1.noll)
prnf{"\nEnter name of the student
scanf("%s",s1.name |

printf{"\nName of the student is %5751 name)

)

}

COMPARISION BETWEEN ARRAYS AND STRUCTURES IN C
Both the arrays and structures are structured data types. But they differ in many ways. The differences

between them are given below:

Arrays

Structures

I. An array is a collection of related data
elements of same type.

1. Structure can have elements of different types

2. An array is a derived data type

2. A structure 1s a programmer-defined data type

3. Any array behaves like a built-in data types.
All we have to do is to declare an array variable
and use it.

3. But in the case of structure, first we have to design
and declare a data structure before the variable of]
that type are declared and used.

4. Array allocates static memory

4. Structures allocate dynamic memory

5. Array uses index / subscript for accessing

elements of the array

5. Structures use (.) operator for accessing the
member of a structure

C

OMPARISION BETWEEN STRUCTURES AND UNIONS IN C

Structure

Union

1.The keyword struct is used to define a structure

1. The keyword union is used to define a union.

of its members.

2. The size of structure is equal to the sum of sizes

2. The size of union is equal to the size of largest
member.

unique storage area of location.

3. Each member within a structure is assigned

3. Memory allocated is shared by individual
members of union.

other members of the structure.

4 Altering the value of a member will not affect

4. Altering the value of any of the member will
alter other member values.

5. Individual member can be accessed at a time

5. Only one member can be accessed at a time.

once.

6. Several members of a structure can initialize at

6. Only the first member of a union can be
initialized.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

7. All data members of a structure remain
active in main memory at a time during
program execution.

7. Only one data member is active at a time in
main memory during program execution

8. It is used to declare a compounded data type.
For example: it groups data members related to
a person or an item, such as student, employee

8. It is useful in cases where user selects any
one data member only for the application, e.g.
for preparing a list of student’s names only.

etc.

POINTER
‘Pointer’ is the one of the most powerful feature of C & C++. Pointers are like the variables, which'ean held
the memory address of another variable. This memory address can be used to access the values of variables.
Thus, pointers can access values directly from RAM. Consider the following example to.indefstand the
pointers:
Let a variable of integer type and assume that it is represented in the main memory as shown*ih the diagram
below:
mnt a;
a=25;

Main Memory (FLAM)

| | T

2N

Value of Variable

Vanable name

Memory Address of Variables

Fig: Representation of Variable in BAM with its Address Value
In the above diagram, ‘a’ is an integer type variable, which-holds a value ‘25°. Let, the memory address for
this variable is 62010. Thus, we can say that the value ‘25’ can be accessed either by the variable’s name ‘a’
or its memory address ‘62010°.
The pointer variables can be used to store the address ofithese variables. Consider the following example:

Main Memory (RAM)

a pir
25 62010
62010 | ----n-mmmmn- 62020

Fig Representation of a Varfable and a pointer variable in RAM
In the above diagram, ptr is a/pointer variable. It holds the address of variable ‘a’.
POINTER VARIABLE DECLARATION
The general syntax<for declaring pointer variable is:
datatype *ptr;
In pointer declaration, “*’ sign is used to declare pointer variable. A pointer can point to the variable having
same data type as that of a pointer variable. Consider the following example:
int *ptr;
The above example declares a pointer variable ‘ptr’ of int type. So, this pointer variable can point to only int
type variables.
POINTER VARIABLE INITIALIZATION
To initialize pointer variable, we have to store the memory address of a variable in it. To do so, we use
assignment operator. For storing the memory address of variable, we use the address operator (&) as shown
below: |
a pir

5 1024

mt *pir;
nt a;
a=3;
pir=&a; 1024

In the above example, address of variable of ‘a’ (1024) is stored in the pointer variable ‘ptr’.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

ACCESSING VALUES USING POINTERS OR POINTER OPERATORS:
To access values using pointers, we use pointer operators. Pointer operators are: indirection operator and
address operator. Indirection operator is * and address operators is &. Indirection operator is used to access
the value of a variable using pointer. Symbols & is used to get the address value of the variable. Consider
the following example:

int *ptr, a=5;

ptr=&a;

printf(“%d”, *ptr); /I Accessing Values Using Pointers
In the above example, & operator is used to store the address of the variable. The indirection operator us
used to show the value of variable using pointer variable.
POINTERS AND ARRAY:
Like variables, arrays can also be used using pointers. To access array through pointef;>we*have to
store the memory address of first location of array. Consider the following example:

int a[5]={5,3,8,9,6};

int *ptr;

ptr=&a[0]; //stores the memory address of first location of array

or

ptr=a; // it also stores the memory address of first locatiof of array

After storing the memory address of array, we have to use the loop to aecess all the array values using
pointer. Consider the following code:
for(i=0;i<5;i++)

{
printf(“\n%d”,*(ptr+i));
}
This loop shows all the values of the loop through pointer:

FILES:
Files are used to store data permanently. ForsthisFILE data structure is used in c. For this data
structure stdio.h header file must be included’in the program. To open a file, we use fopen() function.
Similarly, to close a file, we use fclose()“funetion. Consider the following block of code. This code
shows how to open and close file usingfile;pointer.

#include<stdio.h>

void main()

{
FILE *fptr;
fptr=fopen(“abc”,"r’);
fclose(fptr);

}

OPENING FILES
To actually ‘epén a file, we call ‘fopen ()’ function. The ‘fopen ()’ function accepts a file name (as a
string)'and-a mode value indicates whether we want to open the file for reading or writing purpose.
The mode variable is also a string. The fopen() function returns a pointer if the file can be opened. If
the file’cannot be opened, a NULL value is returned.
To Open the file ‘read.txt’ for reading we might call the fopen () functions as:

fptr = fopen ("read.txt", "r");
The mode string "r" indicates reading. Mode "w" indicates writing, so we could open ‘write.txt’ for
output like this:

fptr = fopen("write.txt", "w");
The other values for the mode string are less frequently used. The third major mode is "a" for append.
If we use "w" to write to a file, which already exists, its old contents will be discarded. Following table
shows all the possible modes of opening a file:

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

Mode Value Description of opening mode
“r” Open an existing file for reading purpose only.
oy Open a new file for writing only. If a file with the specified filename is
already exists, it will be overwritten.
g Open an existing file for appending. Appending means adding new
information at the end of the file.
“r+” Open an existing file for both reading and writing purpose.
“w+” Open a new file for both reading and writing.

«“« »

a+ Open an existing file for both reading and appending.
"rb" opens an existing binary file for reading
"wb" Creates a binary file for writing.
"ab" Opens an existing binary file for appending.

"r+b" or “rb+” | Opens an existing binary file for reading or writing.
"w+b" or “wb+” | Creates a binary file for reading or writing.
"a+b" or “ab+” | Opens or creates a binary file for appending.
Table - List of file - opening modes in C

CLOSING FILES
Although we can open multiple files, but there is a limit to how many-files'we can have open at once. If
we open the files beyond the limit, the standard [/0 library could, run out of the resources it uses to
keep track of open files. Closing a file simply involves calling ftlose(’) function with the file pointer as
its argument:

fclose (fptr);

Types of Files
When dealing with files, there are two types of files yoeu’should know about:

1. Text files

2. Binary files
1. Text files
Text files are the normal .txt files that you can easily create using Notepad or any simple text editors.
When you open those files, you'll see all the contents within the file as plain text. You can easily edit or
delete the contents.
They take minimum effort tormaimntain, are easily readable, and provide least security and takes bigger
storage space.
2. Binary files
Binary files are mostly the .bin files in your computer.
Instead of storing ‘data, in plain text, they store it in the binary form (0's and 1's).
They can hold‘higher'amount of data, are not readable easily and provides a better security than text files.
C provides a number of functions that helps to perform basic file operations. Following are the functions,

Sequential File Access in C

The simplest way that C programming information is stored in a file is sequentially, one byte after the other.
The_file contains one long stream of data.

File access in C is simply another form of I/O.

Function description

fopen() create a new file or open a existing file
fclose() closes a file

getc() reads a character from a file

putc() writes a character to a file

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CIT — INTRODUCTION TO PROGRAMMING IN C

fscanf() reads a set of data from a file
fprintf() writes a set of data to a file

getw() reads a integer from a file

putw() writes a integer to a file

fseek() set the position to desire point

ftell() gives current position in the file
rewind() set the position to the begining point

Random Access To File
There is no need to read each record sequentially, if we want to access a particular record. C suppeits these

functions for random access file processing.
fseek(), ftell() and rewind() functions

fseek() - It is used to move the reading control to different positions using fseek ftinction.
ftell() - It tells the byte location of current position of cursor in file pointer.
rewind() - It moves the control to beginning of the file.

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

