
CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ONLINE
SUPPROT SERVICES

CERTIFICATE IN
INFORMATION TECHNOLOGY

IGNOU SC-2281

Jakhepal-Ghasiwala Road, Sunam
For more information visit us at: nirmancampus.co.in

Call us at: 9815098210, 9256278000

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

PROGRAM AND PROGRAMMING
A program is a set of instructions. These instructions are arranged in a sequence to solve a problem.
The process of writing a program is called Programming. These computer programs or software can
be broadly classified into two categories:

 System Software, and
 Application Software

System software is used to control the functionality of the computer system while the Application
programs are used to solve a particular problem of the user. There are many computer languages used
for developing these software.

DEVELOPMENT OF AN EFFICIENT PROGRAM
Before developing a program, programmer must have the precise details of the problem to be solved.
These include the inputs available and the outputs to be generated. During development, a
programmer has to pass the several stages of software. These stages are:

Problem Definition: Before software development, a programmer must know the details of the
problem to be solved. It takes considerable skill to determine the problems in the existing system.
Under study system provides the details of the problem to be solved. The programmer studies them.
He discusses them with the System Analyst or the user and tries to understand the requirements.

Algorithm: The algorithm is a sequence of finite steps to solve a given problem. The construction of
the algorithm requires creative thinking. Before developing a system, a programmer first set out the
algorithm to visualize possible alternatives.

Flow-Charts: Flow-Chart is the pictorial representation of the algorithm. By using the suitable data
the programmer should check the validity of his logic. This is very important for understanding the
problem logic.

Coding: The sequence of operations defined in flow-chart are converted into a High-Level
programming language such as C, C++, and PASCAL etc. writing the instructions using some computer
language is called coding. This coding file is known as source program.

Compilation: The source program is fed into the computer. But a computer does not understand this
source file. The compiler converts it into a machine understandable form. This machine
understandable form is known as object code. This conversion of source code into object code is
known as compilation. During compilation, compiler scans the source program for syntax errors. If
there are syntax errors in the program, compiler generates error messages. These errors must be
corrected to generate the object code.

Testing Process: The compiler only detects errors in the syntax. It cannot find the errors in the logic
of the program. It is the programmer’s task to find these logical errors. Any faulty logic can only be
detected by examining the output. Finding and correcting such errors in the program is known as
Debugging. This entire process is called Testing.

ALGORITHM
There are many definitions of an algorithm. The following definition is appropriate in computing
science.
“The term algorithm may be defined as a sequence of instructions written in such a way that if
the instructions are executed in the specified sequence, the desired result will be obtained.”
In simple words, we can say that it is a finite set of sequence of steps to solve a particular problem. It
must terminate and should not repeat one or more instructions infinitely.
DEVELOPING AN ALGORITHM

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

The first step in developing an algorithm is to identify a problem. Once a problem is identified, it is
necessary to develop a step-by-step method of solution to solve the problem using a computer.
In algorithms, steps are very important because all the instructions are listed in the order in which
they are carried out. Algorithms can be written in ordinary language like English.
The salient points for writing algorithm are given below:

 The inputs and outputs should be carefully specified.
 The flow of program execution should be taken care.
 Subroutines and functions should be used wherever required.
 The instructions should not be unclear.
 Number of repetitions should be finite i.e. the procedure should reach to some result.
 Algorithm must produce output(s)

Following are some examples of algorithms:
Example1: Calculate and print multiplication of two numbers:

Algorithm
Step1: Read two numbers A and B.
Step2: Multiply A and B and store it in C.
Step3: Print C.
Step4: Stop.

Example2: Write an algorithm to decide whether roots of ax2+bx+c=0 will be real or not,given
a0.
Algorithm

Setp1: Read values of A, B and C
Step2: Calculate D=B2 – 4AC.
Step3: If D<0 then
 Print – Roots are not real.
 Else
 Print – Roots are real.
Step4: Stop

Example3: Write an algorithm to find the sum of 1 to N natural positive integers.
Algorithm

Step1: Read value of N
Step2: SUM=0;
Step3: Repeat Step4 FOR I=1 to N
Step4: SUM=SUM+I
Step5: Print SUM
Step6: Stop

FLOW CHARTING
Flow chart is the pictorial representation of algorithm. Flow charts are not required, but they are
helpful in better understanding of the program logic.
Flowcharts are of two types:

 System Flow Charts.
 Program Flow Charts.

System Flowcharts
A system flowchart describes the data flow and operations for a data processing system. These
flowcharts show how the data processing is to be accomplished.
Program Flowcharts
A program flowchart describes the sequence of operations and decisions for a particular program.
Program Flowcharts make use of standard conventions & symbols for various types of processing
operations.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

SYMBOLS USED IN FLOW CHARTS.
The following symbols are used for drawing flow charts:

1. The terminal Symbol: Rectangles with rounded ends are used to

indicate the beginning (START) and end (STOP)

2. The Input/ Output symbol: Parallelograms are used to represent

input/output operations.

3. The process/storage symbol: Rectangles are used to indicate the

processing operation such as storage or the arithmetic operations

4. The decision symbol: Diamond shaped boxes are used for decision-

making procedures. The arrows pointing out are labeled with Yes or
No.

5. Pre-defined process symbol: Rectangle with width shown as double
lines is used to represent a process which has been set out in detail
somewhere else.

6. Arrows: Are used to show the flow of sequence of symbols.

7. Notes: Are used to add descriptions or notes or remarks

8. Connector: Exit to, Entry from another part of flow chart.

Advantages of Flow Charts:

1. Flow charts help us to understand the logic of the problem.
2. With the help of flow-charts; logic drawn by one programmer is understood by other easily.
3. It is easier to detect a logical error in the flowchart than in the program listing.
4. Flow charts help a lot in program maintenance.

Disadvantages of Flow-Charts:
1. It becomes difficult to keep a flowchart neat and uncluttered if logic is complex.
2. It is difficult to change flow-chart without redrawing it, which is time consuming.
3. They sometimes become big and complex.

FLOWCHART EXAMPLES:
Example1: Given the length L and breadth B for a rectangle. Find the area A and perimeter P.

Start/stop

Index
Transactions

Is A >B
No

Yes

OR

Input Name

Num=A+B

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

BASIC BUILDING BLOCKS OF C LANGUAGE
HISTORY OF C LANGUAGE
C language is very popular programming language. It was developed in the early 1970s. It was developed by
Dennis M. Ritchie at Bell Labs (AT&T). It is developed from the BCPL (Basic Combined Programming
Language). C Language is also called the Middle Level Programming language. It is because, it can be used
to develop System and Application Programs.

STRUCTURE OF A C PROGRAM
The structure of a C program is a protocol (rules) to the programmer. These rules guide the programmer how
to create the structure of the C program. The general basic structure of C program is shown in the figure
below.

Documentations
The documentation section consists of a set of comment lines. It allows programmer to define some
description of the program.
Preprocessor Statements
The preprocessor statement begins with # symbol. They are also called the preprocessor directive. These
statements instruct the compiler to include header files or to define symbolic constants etc. before
compiling. Some of the preprocessor statements are listed below.

Global Declarations
Global declarations can eb variables or functions. They are declared before the main () function. These
global variables can be accessed by all the user defined functions in the program.
The main () function
Execution of C program starts with main () function. No C program is executed without the main function.
Every C program should contain only one main () function.
Braces
The left braces after main() indicates the beginning of the main () function and the right braces indicates the
end of the main () function.
Local Declarations
Variables declared inside main() are local declarations of main() functions. They can be used only within the
main() function.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Program statements
These statements are the instructions of program. They are used to perform a specific task (operations). An
instruction may contain an input-output statements, expression, control statements, simple assignment
statements etc. Each executable statement should be terminated with semicolon.
User defined functions
These are subprograms. A subprogram is also a function. Subprograms are the logical grouping of
statements to perform some specific task. These functions are written by the user. Therefore, they are called
user defined functions.
CHARACTER SET:
The set of allowed characters in the language is called the character set. These character are used to
form the vocabulary of the language, i.e. identifiers, keywords, constants, variable etc. Character set of
C consists of:
 Letters – Alphabets in Upper and Lower Case, i.e. A - Z and a - z
 Digits – From 0 to 9
 Special characters: e.g. &, *, +, $, =, !, %, >, ?, (,), {, } etc.

TOKENS
Tokens are like the words and punctuation marks in natural language. These are the basic and the
smallest units of C program. Similarly, in C these elements are keywords, constants, identifiers,
operators, strings, and special Symbols. These are called tokens of c language. Following figure shows
the six types of tokens present in the C language.

Any C program consists of these tokens.

IDENTIFIERS
An Identifier is a name given to a programming element. This program element can be a variable,
constant, function, array, structure etc. An identifier consists of a few letters, numbers and a special
character (underscore). An identifier consists of maximum of 31 characters. C is a case sensitive
language. It means identifiers in upper and lower case are distinct.
Rules for declaring identifiers:
Following are the rules for declaring identifiers:

1. The name of the identifier must begin with a character.
2. The name of identifier can contain maximum of 31 characters.
3. Identifier name cannot be a keyword.
4. Don’t use white space in the name of identifier.
5. An identifier name can have letters, digits and valid special characters (underscore).

Following are some examples of valid identifier:
roll, a1, first_name, age, fathername etc.

Following names for identifiers are invalid:
1a because first character must be a character
void because it is a keyword
first name because it contains white space
%age because it contains a special character except than underscore

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

KEY WORDS/RESERVE WORDS
Those words which are predefined in the compiler of C language are called keywords. Keywords are
also known as reserve words. We cannot change the meaning of these keywords. All the keywords
must be written in the lower case characters only. When we use these keywords in the Turbo C Editor,
they are displayed in the white color. Normally, a C compiler has 32 keywords. But new C Compilers
have 37 keywords. Following are the C language keyword:

VARIABLES
The term ‘variable’ consists of two words vari (vary) + able. It means which can be changed. Thus, a
variable allows us to change its value during runtime/execution time of the program. These are used
to store the data temporarily in the main memory of computer. This data remain in memory during
the execution of program.
To use variables in the program, they must be declared in program. For this, programmers have to
give it a name and a data type. For deciding a variable name, following rules should be taken care.

1) The name of variable should not exceed than 31 characters.
2) A variable name can contain alphabets, digits or underscore.
3) The variable name must start with a Character.
4) Special Symbols except Underscore ‘_’ are not allowed in variable name.
5) A keyword cannot be a variable name.
6) Uppercase and lowercase variable names are significant, i.e., roll, ROLL and Roll are the

different variables.
Some examples of valid variable names are – a1, first_name, my_float_no, age, rollno etc.
Type Declaration/ Variable Declaration
C language is a strongly typed language. It means all the variables must be declared before using them.
Variable declaration contains two things:

1. The data type of variable, and
2. The variable name

The syntax for declaring a variable is:
 Data_typevariable_name;
Here, Data_type tells the type of data to be stored in the variable. The variable_name is any valid name
for the variable.
For example: int age; float percent; char grade;
In the above examples, int, float and char are the data types and age, percent and grade are the valid
variable names.
Storing/Assigning Value To A Variable
Assigning values to a variable means storing a value in the variable. For this we use assignment
operator, e.g.
 int a;
 a = 20;

 char grade;
 grade = ‘A’;

In the above example, 20 value is assigned to an integer variable ‘a’ with the help of assignment
operator. Here, ‘=’ is the assignment operator.
Variable Initialization
It is an assignment to variable at declaration time. For example:
 int age = 20;
 float pi = 3.14;

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CONSTANTS:
Those identifiers which do not allow to change their value during execution time of program are
called constants. So, constants have fixed values. C supports several types of constants. We can classify
the constants as follows-

Numeric Constants:
These constants consist of digits from 0 to 9. They can be with or without decimal points in them.
These numbers may be preceded with +ve or –ve sign. There are two types of numeric constants:

(1) Integer Constants
(2) Real or Floating Point Constants

1. Integer Constants: It is a signed or unsigned whole number. C supports Integer constants in the
form of decimal, octal and hexadecimal numbers. Examples of integer constants are- 550
(Decimal), 043 (Octal), 0xA3(Hexadecimal).

2. Real Constants: Real constants are also known as floating point constants. Any number with
fractional part is called real or floating point constant. This number may be preceded by the +ve or
–ve sign. A real constant can be written in decimal or exponential form. Examples of real constants
are-

Real constant in Decimal form is : 0.2569
Real Constant in Exponential form is : +2.64e3

The exponential form is used when value is too small or too large. In this form, number is divided
in two parts-mantissa and exponent. Mantissa parts appears before ‘e’ and the exponent part is
after ‘e’.

Character Constants
There are two types of character constants:

(1) Single Character Constants, and
(2) String Constants.

1. Single Character Constants: These constants must be enclosed within single quote. It can either
be a single alphabet, a single digit or a single special symbol. Example of character constants are-
 ‘v’, ‘2’, ‘*’ etc.

2. String Constants: The combination of characters is called a string. Any string may consist of
alphabets, digits and symbols. The string must be enclosed within double quotes. Example of string
constants are- “Param Kansal”, “Phone no. 9501010979” etc.

Constant Declaration:
To define the constant we use const keyword. Its syntax is:
 const<data type><constants name>;
For example;
 const float pi=3.14;
The alternative method of declaring constants is Symbolic Constants. For this, ‘#define’ preprocessor
directive is used.
For Example:

#define PI 3.14
#define MAX 100

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

DATA TYPES:
Data type is the type of data to be stored in the main memory. C language is rich in data types. The
Data types in C language can be classified as-

o Primitive Data Types, and
o Non-Primitive data types

Primary Or Primitive Data Types
These data types are predefined in the compiler of C. These data types are also known as fundamental
or built-in data types. These data types are: int, float, char, double and void. All C compilers support
these data types. We can classify these data types into Integer, Real and void types.

Following table shows required memory size and the range of values of these data types.

Data Type Size Value Range Range in Decimal Description

char 1 Byte -27 to 27-1 -128 to 127 Stores character value
int 2 Bytes -215 to 215-1 -32768 to 32767 Stores integer value
float 4 Bytes -231 to 231-1 3.4x10-38 to 3.4x10+38 Stores fractional value
Double 8 Bytes -263 to 263-1 1.7x10-308 to 1.7x10+308 Stores fractional value

Table – Size and Range of Basic Data Types in C
char data type:
It is used to store the character data. It takes one byte memory to store value. Its value range is -27 to
27-1. The range in decimal is -128 to 127. Following program show how to use it:

void main()
{
char ch=’A’;
printf(“%d”,ch); //shows 65 (ASCII code of A)
printf(“%c”,ch); //shows A
}

int data type:
It is used to store the integer data. It takes two bytes memory to store value. Its value range is -215 to
215-1. The range in decimal -32768 to 32767. Following program show how to use it:

void main()
{
int a=65;
printf(“%d”,a); //shows 65
}

float data type:
It is used to store the single precision fractional data. It takes 4 bytes memory to store value. Its value
range is -231 to 231-1. The range in decimal 3.4x10-38 to 3.4x10+38. Following program show its use:

void main()
{
float a=6.5;
printf(“%f”,a); //shows 6.500000
}

double data type:
It is used to store the double precision fractional data. It takes 8 bytes memory to store value. Its value
range is -263 to 263-1. The range in decimal 1.7x10-308 to 1.7x10+308. Following program show how to
use it:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

void main()
{
double a=6.5;
printf(“%lf”,a); //shows 6.500000
}

Void type
The void type has empty or null value. This data type is commonly used with functions. Those
functions which do not return any value, have void type.

NON-PRIMITIVE/SECONDARY DATA TYPES
Those data types which are not inbuilt in C, are called non-primitive data types. These data types are:
derived, user-defined, and pointers.
Derived Data Type
Those data types which are derived from the basic data types are called derived data types. Arrays,
Structure and Union are the derived data types.
User-Defined Data Types
These data types are defined by the user. The ‘enum’ and ‘typedef’ are used for this purpose.
Pointers
Pointer is a powerful feature of C language. Pointers are used to store the memory address of a
variable.
OPERATORS AND THEIR TYPES
Operators are the symbols used to perform specific operations. For example, + operator is used to
perform addition operation, > is used to compare values etc. These operators perform their operation
on the operands. Operands are the identifier on which operation is performed. Based on the operand,
operators can be classified as:

Unary Operators:
Those operators which require one operand to perform their operation are called unary operators.
Examples of these operators are: ++, --, !etc.

For example: a++, --b
Binary Operators:
Those operators which require two operands to perform their operation are called binary operators.
Examples of these operators are: +, -, *, %, &&, > etc. Most of the operators in C are Binary operators.
 For example: a+b, a>b
Ternary Operators:
Those operators which require three operands to perform their operation are called Ternary
operators. This operator is also called Conditional Operator. Example of this operator is: __?___:___
This is the only ternary operator in C language.
 For Example: big = a>b ?a : b ;

Operators can also be categorized according to their operations. They can be categorized as below.

1.) Arithmetic Operators.
2.) Comparison Operators
3.) Logical/Boolean Operators
4.) Assignment Operators

5.) Increment/Decrement Operators
6.) Bitwise Operators
7.) Conditional Operators
8.) Additional Operator

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ARITHMETIC OPERATORS:
These operators are used for arithmetic operations. These are five operators. These are +, -, *, / and %.
All these are binary operators. Following table shows the operations of these operators:

Name Operator Description Example

Addition + Used to perform Addition of
numbers. 2+4 => 6 2.0+4.0 =>6.0

Subtract - Used to perform subtraction or
used as any unary minus. 6-2 => 4 6.0-4.0=>2.0

Multiply * Used to perform multiplication
of numbers. 7*2 => 14 7.0*2.0 =>14.0

Division / Used to perform division of
numbers.

5/2 => 2
Integer division

5.0/2.0 =>2.5
Real Division

Modulus % Used to get remainder value
after division of numbers. 7%4=>3 5.0%2.0

Not allowed
RELATIONAL OPERATORS:
These are also called comparison operators. These operators are used for comparing values. These
are 6 operators. These are >, <, >=, <=, == and !=. All these are binary operators. Following table shows
the operations of these operators:

Name Operato
r Description Exampl

e Result

Equal to = = Used to check whether two
values are equal

4= =5
5= = 5

False
True

Not Equal to != Used to check whether two
values are not equal

4! =5
4! =4

True
False

Greater then > Used to check whether first value
is greater than second

4>5
5>4

False
True

Less then < Used to check whether first value
is lass then second

4<5
5<4

True
False

Greater than
or equal to >=

Used to check whether first value
is greater than or equal to second
value

5>=5
6>=8

True
False

Less than or
equal to <=

Used to check whether first value
is lesser than or equal to second
value

4<=5
4<=2

True
False

LOGICAL OPERATORS
These are also called Boolean Operators. These operators are used to form compound relational
expressions. These operators are also used to compare values. These are 3 operators. These are &&
(AND), || (OR) and ! (NOT). AND and OR are binary operators and NOT is unary. Following table shows
the operations of these operators:

Name Operators Description Associatively Example Result

AND &&

Return true if both
operands are true
otherwise returns false Left to Right

3>5 && 4>5
3>5 && 4<5
3<5 && 4>5
3<5 && 4<5

False
False
False
True

OR ||

Return true if at least
one operand s are true Left to Right

3>5 || 4>5
3>5 || 4<5
3<5 || 4>5
3<5 || 4<5

False
True
True
True

NOT !
Return true if operand
is false & vice – versa Right to Left

!(3<5)
!(3>5)

False
True

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ASSIGNMENT OPERATORS
These Operators are used to assign/store values in a variable. The symbol of assignment operator is
’=’. Consider the following examples which show how to use assignment operator in C programs:
 a = - 2; // assigns –ve value (-2) to the variable.
 b = 5; // assigns value (5) to the variable.
 c = a + b; // assigns the result of expression to the variable.
 a = a + 10; // self-assignment of a variable.
Assignment operators can also be used as shorthand operators. Shorthand assignment operators are
useful in self-assignment statements. Following table shows the examples of shorthand operators
used in C:

Shorthand
Operator

Example for
Shorthand Assignment

Equivalent
Self-Assignment

+= a+ =2 a = a + 2
- = a- =2 a = a – 2
= a =2 a = a * 2
/= a / =2 a = a / 2
%= a%=2 a = a % 2

Table – List of Shorthand Assignment Operands
INCREMENT AND DECREMENT OPERATOR
These are unary operators. They require only one operand. In C, ‘++’ is the increment operator and ‘--'
is the decrement operator. Increment operator adds one to the current value while the decrement
operator decreases one to the current value.
Consider the following example:
 int a = 5, b = 6;
 a ++ ; //a becomes 6
 b – –; //becomes 5
These operators can be classified into two categories. These categories are named as:

 Prefix Increment/Decrement operator. (++a/--a)
 Postfix Increment/Decrement operator. (a++/a--)

CONDITIONAL OPERATOR
It is the only ternary operator used in c language. It requires three operands to perform its operation.
This operator is used to carry out conditional operations. It can be used in place of if – else statement.
The syntax for conditional operator is:

Condition?Expression1 for True Condition:Expression2 for False Condition
Example of Ternary Operator:

int x, y, big;
x = 100;

 y = 15;
 big = x>y ?x : y;

EXPRESSION
An expression is the valid combination of operators and operands. Here, operands may be a variable
or it can be a constant. Consider the following example:

c = a+b;
a = c + 10;

Here c, a,b, and 10 are the operands and + and = are the operators. Expressions can be categorized
according to the operators used in the expressions:

1. Arithmetic Expressions
2. Relational Expressions
3. Logical Expressions
4. Mixed mode Expressions

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

1. Arithmetic Expressions
When Arithmetic operators are used in an expression, itis called as Arithmetic Expression. This
expressions return numeric value. For Example:

c=a+b c=a*b etc.
2. Relational Expressions
When relational operators are used in an expression, it is called as Relational Expressions. Relational
Expression returns either True (non zero value) or False (zero value). For example:
 a > b a = = b 5 > = 2 etc.
3. Logical expressions
When logical operators along with relational operators are used in the expression, then the
expression is termed as Logical Expression. Logical Expression also returns either True or False value.
For example:

(a > b)&&(a > c) (a > b) || (b > c) ! (a > b) etc.
4. Mixed mode expressions
When an expression contains more than one type of operator, it is called mixed mode expression. For
example:
 (a+b) >= (c*d)
HIERARCHY OR PRECEDENCE OF OPERATORS IN EXPRESSIONS
An expression may contain more than one type of operators. In such situation, which operator is
evaluated first?, is decided by the hierarchy of operators. The sequence of operators in which they are
applied on the operands in an expression is called the Precedence of Operators.
Consider the following examples which illustrates how expressions are evaluated using operators
precedence–

 a = 5 * 4 / 4 + 8 – 9 / 3; (* is evaluated)
 a = 20 / 4 + 8 – 9 / 3; (/ is evaluated)
 a = 5 + 8 – 9 / 3; (/ is evaluated)
 a = 5 + 8 - 3; (+ is evaluated)
 a = 13 - 3; (- is evaluated)

 a = 10;
TYPE CONVERSION
When value of one type is converted into other type, it is called Type Conversion. There are two types
of type conversions.

(1.) Automatic Conversion or Implicit Conversion
(2.) Casting Value or Explicit Conversion.

Automatic/Implicit Conversion:
This type of conversion is automatic. For this type of conversion, we use assignment (=) operator. It is
also called implicit conversion. This type of conversion is used when lower data type operand is
converted into higher data type. There is not loss of information in this type of conversion.
Consider the following example for automatic conversion:
 int m = 15;

float n = m;
Casting a value or Explicit Conversion
This is forceful conversion. For this type of conversion, we use caste operator. It is also called explicit
conversion. There may or may not be any loss of information in this type of conversion. This type of
conversion is used when higher data type operand is converted into lower data type.
The syntax for this type of casting is:

(Desired data type) Expression
For example:
 float m;

int n = 7;
m = (float)n/2;

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

CONTROL STATEMENTS:
Flow of execution of program is sequential by nature. To control this execution flow, we use control
statement. So, we can say that those statements which are used to control the execution flow in a
program are called Control Statements. These control statements can be categorized into three
divisions:

1. Conditional / Branching / Decision-Making Control Statements.
2. Looping or Repetitive Control Statements.
3. Unconditional Control Statements.

BRANCHING CONTROL STATEMENTS
These statements are used for decision making purpose. These are also called conditional or
selection or decision – making control statements. C language supports the following Branching
Control Statements:
i. The ‘if else’ statements.
ii. The ‘switch case’ statement.

If else statements:
If else statements can be used in the four different ways:

 Only if statement
 If and else statement
 else if ladder statement
 nested if else statement

If statement:
It is a branching statement. It is used for decision making purpose. If the given condition is true, it will
run the statement otherwise do nothing.
Consider the following example and its syntax:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

If and else statement:
It is a branching statement. It is used for decision making purpose. If the given condition is true it will
run the statements1 otherwise it will run the statements2, as shown below in the example:

Else if statement:
It is another form of if statement. It is also used for decision making purpose. It is used when we have
to test multiple conditions. It is a chain of many if else statements. It executes the first true condition.
If no condition is true, it will execute the last else statement. Consider the following syntax and
example:

Nested if else statement:
It is another form of branching statement. It is also used for decision making purpose. It is used to test
multiple conditions. When one ‘if else’ statement is used within another if-else statement, it is called
Nested if else statement. Consider the following syntax and example:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Switch case:
It is another branching statement. It is also used for the decision making purpose. It is like else if
statement. It is used to test multiple conditions. It is used when we have to test a variable or
expression against a limited set of constant values. It is used to test integer type operands only.
Consider the following syntax and example:

In switch case, expression or variable is matched with each case value. When a match is found, the
corresponding block of case is executed. If not case matches with the variable’s value, default
statement will be executed.
LOOPING STATEMENTS:
These statements are also called iterative statements. These are used for repetitions. C provides
three types of iterative or looping control structures:

a. The ‘for’ loop.
b. The ‘while’ loop.
c. The ‘do while’ loop.

Any looping control statement, in general, would consist of the following components:
 Initialization – It is the starting value of counter variable
 Test condition – it is the end value of the counter variable.
 Iteration – Increases or decreases the value of counter variable.
 Body of loop – These are statements to be executed repeatedly.

Looping control structures may be classified as -
A. Entry - Controlled loop (Pre-Test Loop), and
B. Exit - Controlled loop (Post-Test Loop).

ENTRY CONTROLLED LOOPS:
In the entry-controlled loop, the control conditions are tested before the body of loop. The ‘for’ and
‘while’ loops are the entry-controlled loops
For loop:
It is a looping control statement. It is used for repeating statements. It is entry controlled loop in
which control conditions are tested before the body of loop.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

While loop:
It is a looping control statement. It is used for repeating statements. It is entry controlled loop. In this
loop condition is tested before the statements (body) of loop.

EXIT CONTROLLED LOOP:
In the exit-controlled loop, the test condition is performed after the body of the loop. Therefore, this
loop must execute at least once, even if the condition is false initially. Do while loop is an example of
exit controlled loop.
Do while:
It is a looping control statement. It is also used for repeating statements. It is an exit controlled loop.
In this loop, condition is tested after the body of loop. So this loop must execute at least once.

NESTING OF LOOPS
When a loop is used within another loop, It is termed as Nesting of Loops. We can put any loop within
another loop. For example, we can put a ‘for’ loop in another ‘for’ loop or a ‘while’ loop etc. Consider
the following syntax and example:

COMPARISON OF WHILE AND DO-WHILE LOOP
The comparison between ‘while’ and ‘do while’ statements is as follow:
1. In ‘while’ loop, the condition is tested before execution of the body of loop. But, in ‘do while’

loop, the condition is tested after execution of the body of the loop.
2. The ‘do while’ loop must execute at least once even if the condition is false initially. But the

‘while’ loop may not execute if the condition is not satisfied initially.
3. While loop is entry controlled loop and do while loop is exit controlled loop.
4. The ‘do while’ loop is followed by the semicolon (;) but in the ‘while’ loop, it is not given.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

JUMPING STATEMENTS
These statements are used to jump the execution control from one to other part of the program. These
are also known as skipping statements. These statements are goto, continue and break:
The ‘goto’ statement: It is a jumping statement. It transfers the control at the defined location.
Location is defined by the label. It can use either the forward jump or backward jump, as shown in the
figure.

Consider the following example:

The ‘break’ statement: It is a jumping statement. It takes the control out of the control statement in
which it is used. It is widely used in switch statement.
Following example shows the use of break statement in a loop.

The ‘continue’ statement: It is a jumping statement. It takes the control to the next iteration in the
loop. It is used in loops.
Following program shows how to use ‘continue’ statement

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

FUNCTIONS:
A function is a subprogram. It is also called routine or procedure. It is a logical grouping of instructions in a
program. Functions are used to break a complex problem into a small parts or modules. They can be used
multiple times, but defined only once. Every executable program must have a main() function. The main
function is an entry point of execution of the program. The main() function invokes the other functions to
perform various tasks.
ADVANTAGES OF FUNCTIONS:
Using functions have a number of advantages. The main advantages of using a function are:

 It becomes easy to solve a complex program by dividing it into small functions.
 It becomes easy to debug the program.
 It is easy to maintain and modify a function.
 It can be called any number of times but defined only once.
 Small functions are self-documenting.
 It facilitates top-down modular programming approach as shown in the following figure.

TYPES OF FUNCTIONS:
Functions can be classified in two categories:
1. Library/Standard Functions: Those functions, which are in-built or pre-defined in the C language, are

called standard or library functions. All these functions are organized in header files. So to use any
predefined functions, we must include the corresponding header file in which it is used. For example:
clrscr(), printf(), scanf(), sqrt(), strcpy() etc. are the predefined functions.

2. User Defined Functions: Those functions, which are defined by the user, are called user defined
functions. User can define his own functions to fulfill his requirements. Function main() is the best
example of user defined function.

FUNCTION DEFINITION:
Function definition defines the working of the function. It has a function type, name, parenthesis with zero
of more arguments, and a body. The general format of the function definition is given below:

functiontype functionname (arguments)
{

body of the function
return statement;

}
In the above syntax, functiontype shows the type of value it would return to calling function. A function may
or may not return a value to the calling function:

 Those functions which do not return a value are of void type. For example: clrscr() function does
not return a value.

 Those functions which return a value to its calling function are called return type function. A
function may return int, float, char etc. value. For example, sqrt(9) function returns the square root of
the given number.

Arguments to the function are optional. It means there may be zero or more arguments. These arguments
pass information to the function. These arguments are used in the body of the function.
Thus, user defined functions can be defined in four different ways. These are:

1. void type without arguments
2. void type with arguments
3. function returning values without argument
4. function returning values with argument

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

FUNCTION PROTOTYPE/DECLARATION:
A function prototype is a declaration. It declares a function and its type. Whenever the function is called, it
is checked with its declaration/prototype. Function is declared when a function is called before its definition.
FUNCTION CALL:
To use a function, it must be called. When we call function, we use functionname with actual arguments.
Consider the following syntaxes:
 functionname(values); //used to call a void type function
 var=functionname(values); //used to call a return type function
Following program example shows the function declaration, definition and call

ACTUAL AND FORMAL ARGUMENTS:
Arguments to the function are optional. It means there may be zero or more arguments. These arguments
pass information to the function. These arguments are used in the body of the function. These arguments are
of two types:

 Formal arguments
 Actual arguments/Parameters

Formal Arguments:
These arguments are passed in the function
definition. They are also called as dummy
arguments.
Actual Parameters:
These arguments are passed during function-call.
These arguments may be variables or values.
Following program shows these types of arguments:
SCOPE RULES:
A scope is an area of the program where a defined variable can be used. Beyond that area, variable cannot be
accessed. Declaration place of a variable decides the scope of a variable. There are two types of scopes for
variables in C: Local Scope and Global Scope
Local Scope:
Those variables which are declared in the body of the function are of local scope. They can be used only
within the function. They cannot be used outside the function body. Formal arguments also have the local
scope.
Global Scope:
Those variables which are declared outside all functions are of global scope. A global variable can be used
by any function in the entire program.
Consider the following program. It shows the local and global variables.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

PASSING PARAMETERS TO FUNCTIONS:
Parameters can be passed to function in two ways - by value and by reference, which are called ‘call by
value’ and ‘call by reference’ respectively.
DIFFERENTIATE BETWEEN CALL BY VALUE AND CALL BY REFERENCE:
Call By Value

1. The formal and actual parameters are two different
variables.

2. The formal parameters must not be preceded by address
operator (&).

3. When the value of the formal parameter is changed, the
corresponding value of actual parameter is not changed
automatically.

4. Actual Parameter is read only.
5. Actual Parameter may be a constant, a variable, or an

expression.
6. int x;

Call By Reference
1. The formal and actual parameters are same, though their

names may be different.
2. The formal parameters must be preceded by address

operator (&)
3. The value of formal parameter automatically changes

when the value of actual parameter is changed.
4. Actual parameter is read – write.
5. Actual Parameters must be a variable.
6. int &x;

RECURSION/RECURSIVE FUNCTIONS:
A function which calls itself again and again is known as recursive function. Recursive functions are very
useful while working with data structures like linked lists, trees etc. Consider the following example. It
calculates the factorial of the given number using recursive function.

INPUT AND OUTPUT:
C provides many functions for standard input and output. These functions are defined in a header file.
This header file is stdio.h (standard input output header file). To use these input/output functions, we
have to include header file in our program:#include<stdio.h>
Here, #include is the preprocessor directive and <stdio.h> is the header file.
C supports two types of I/O functions:

 Formatted functions
 Un-formatted functions

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

FORMATTED FUNCTIONS:
The printf() and scanf() are the formatted functions. We can format the input and output using these
functions. Using these functions we can input and output any type of data in the program. These
functions use formatting codes for input and output. Commonly used format codes are given in the
following table:

The printf() function:
The printf() function is used for outputting any type of data on Screen/Console. This function uses
format codes, like %d, %f, %c, %s, etc. to format different data types. Use of format code depends on
the data type of the variable to be displayed.
The general syntax for the printf () function is:

printf(“Message……..”); OR
printf (“Format codes”, arg1, arg2, ……);

Following examples show how to use printf () function using different Format strings –
Example 1: printf (“Vikas Kansal”); //displays Vikas Kansal
Example 2: int a=5;printf (“%d”, a); //displays 5
To format output, we use the field-width and the format-flags in the printf() function. The general
syntax for this is as below:

printf (“%<format flag><field width>format code”, argument);
The commonly used format flags are:

Consider the Following Examples:

The scanf() function:
The scanf() function is used for inputting any type of data during runtime. This function uses format
codes, like %d, %f, %c, %s, etc. to format different data types. Use of format code depends on the data
type of the variable to be input.
The general format for scanf() function is:

scanf(“Format codes”,&arg1, &arg2, …….);
Example for scanf() function is:

int a, b;
float c;

 scanf(“%d %f %d”, &a, &c, &b);
The ampersand ‘&’ symbol before each variable name is an operator. It specifies the address of the
variable in the main memory.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

UNFORMATTED INPUT/OUTPUT FUNCTIONS
Unformatted I/O functions are used for string and character type data. Following table shows the
various I/O unformatted functions used in C:

CHARACTER I/O FUNCTIONS:
Character input and output functions are defined in the conio.h (console input output) header file. So,
to use these functions, we include conio.h file in the program.
The getch() function: The getch () function accepts a single character from the keyboard. But it does
not display it on the screen. After typing the character, there is no need to press the ‘Enter’ key. Its
syntax is:

char_variable=getch();
The getche() function: This function is also used to read a single character from the keyboard at the
console. It displays the character entered by the user at the console. The character ‘e’ in the getche ()
function means ‘echo’ (displays). Its syntax is:

char_variable = getche ();
The getchar () function: This function is also used to read a single character from the keyboard at the
console. This function accepts the character data and waits for the ‘Enter’ key.

char_variable = getchar ();
Following table shows the comparisons between the getch (), getche () and getchar () functions:

The putch () and putchar () functions are used for single character output. The syntax for using these
functions is as follows:

putch (char_variable); putchar (char_variable);
Consider the following program:

STRING INPUT/OUTPUT FUNCTIONS
The gets() and puts() are the unformatted input/output functions. These functions are used for the
string type data. These functions are defined in the stdio.h file. So, we have to include this header file.
The gets() function is used for unformatted string input. Using this function, we can input a string
including spaces. The syntax for using this function is as follows:

gets(string_variable);
The puts () function is used to display the unformatted string at the console. The syntax for using this
function is as follows: puts (string_variable);
Following program shows the use of these functions:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Section B
STORAGE CLASSES:
Storage classes are used to define the scope, life and location of a variable in the program. In C, four
storage classes are used to define scope, life and location of variable. These are:

1. Automatic Variables
2. Register Variables
3. Static Variables
4. External Variables

These classes are used during the declaration time of variable. We can say that storage classes define
how the memory reference is carried out for a variable.
Automatic Variables:
These variables are also called Internal or local variables. The keyword auto is used to define this
storage class. If we do not define any storage class, the default is auto.

Scope: Its scope is limited. They can be used only within the function in which they are
declared.
Life: Their life time is small. They remain in the memory till the function execution.
Location: These variables are stored in the main memory (RAM).

Static Variables:
Static variables are defined within a function. The keyword static is used to define this storage class.

Scope: Its scope is limited. They can be used only within the function in which they are
declared.
Life: Their life time is long. They remain in the memory till the program execution.
Location: These variables are stored in the main memory (RAM).

Register Variables:
Automatic variables are stored in the main memory (RAM). Accessing a memory location takes time.
So, to speed up the processing, some variables can also be stored in the registers of CPU. Those
variables which are used frequently in the program, they can be stored in the registers. The keyword
register is used to define this storage class..

Scope: Its scope is limited. They can be used only within the function in which they are
declared.
Life: Their life time is small. They remain in the memory till the function execution.
Location: These variables are stored in the registers of the CPU.

External Variable:
These variables are declared outside any function. They can be used anywhere throughout the
program. The keyword extern is used to define this storage class.
Following programs show how to use these storage classes with their output:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ARRAY:
An array is a homogeneous collection of values. It means an array can store more than one value of
same data type at a time. It is an ordered and finite set of elements. Memory allocation to array is
static. We cannot change its length during runtime. A contiguous block of memory is allotted to array.
They are of two types;

1. One Dimensional Array 2. Multidimensional Array

ONE DIM ARRAY:
Those arrays which require one index/subscript to access its value is called one-dim array. These
arrays are also called Vectors or Linear Array. These arrays have one dimension only –a single row
or a single column. Smallest index of array is known as Lower Bound (LB). In C, it is always 0. Largest
index of array is known as Upper Bound (UB). It is always equal to length – 1. Consider the following
figure of one-dimensional array.

Declaration of One Dim Array:
Before using arrays, we have to declare them. Following syntax is used to declare one dim array:
 datatype arrayname[length];
For example:
 int a[10];
Here, int is the data type of the array, a is the name of array, and 10 is the length of array. This array
can store 10 integer values. Length of array must be constant.
One Dim Array Initialization:
Like the variables, arrays can also be initialized. It has the following syntax.
 Datatype arrayname[length]={val1, val2, val3,……….};
For example:
 int a[5]={5, 4, 8, 19, 10};
READING VALUES INTO ONE DIM ARRAY:
We can store values into one dimensional array during design time and run time. To store values
during design time, commonly we initialize the array. Storing values into one dimensional array
during runtime is called reading values into array. For this, we use the loop to input all values of array.
In the loop, we use input functions to read the values one by one. Consider the following example:

int a[5];
for(i=0;i<5;i++)
{
 scanf(“%d”, &a[i]);
}

In the above code, we use scanf() function to read values of one dimensional array one by one using
the for loop.

DISPLAYING ONE DIM ARRAY CONTENTS:
To display all the contents of array, we use loops. Output functions are used to display the contents in
a loop. Consider the following example:

for(i=0;i<5;i++)
{
 printf(“%d”, a[i]);
}

In the above code, we use printf() function to display the contents of array one by one using the for
loop.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Following program shows how to work with the one dim array.

MULTIDIMENSIONAL ARRAY:
Those arrays which require more than one index/subscript to access its valueare called multi-
dimensional array. They can be two-dimensional or three-dimensional. In two-dim arrays, we use two
index values and in three dim arrays we use three subscripts.

TWO DIMENSIONAL ARRAYS:
Those arrays which require two index/subscripts to access its value are called two-dimensional array.
They are also called matrix or tabular array. These arrays have two dimensions – rows and columns.
Row index and column index begins from 0. Before using arrays, we have to declare them in C.
Two Dim Array Declaration:
Following syntax is used to declare one dimensional array:
 Datatype arrayname[rows] [columns];
For example:
 int a[3][2];
Here, int is the data type of the array, a - is the name of the array, 3 is the numbers of rows in the array,
2 is the number of columns in the array. This array can store 6 values.
Two Dim Array Initialization:
Like the variables, arrays can also be initialized. It has the following syntax.
 Datatype arrayname[rows] [columns]={ {val11, val12, …. }, {val21, val22,……}, …. };
For example:
 int a[3][2]={ {5,2},{6,4}, {8,9} };

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

READING VALUES INTO 2D ARRAY:
We can store values into array during design time and run time. To store values during design time,
commonly we initialize the array. Storing values into array during runtime is called reading values
into array. For this, we use nested loop to input all values of 2D array. In the loop, we use input
functions to read the values one by one. Consider the following example:

int a[5];
for(i=0;i<5;i++)
{
 for(i=0;i<5;i++)
 {
 scanf(“%d”, &a[i]);
 }
}

In the above code, we use scanf() function to read values of 2D array one by one using the nested for
loop.

DISPLAYING 2D ARRAY CONTENTS:
To display all the contents of 2D array, we use nested loops. Output functions are used to display the
contents in a nested loop. Consider the following example:

for(i=0;i<5;i++)
{
 for(i=0;i<5;i++)
 {
 printf(“\t%d”, a[i]);
 }
printf(“\n”);
}

In the above code, we use printf() function to display the contents of 2D array one by one using the
nested for loop. It shows the contents in the matrix form.

Following program shows how to use 2D array:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

STRING:
It is a combination of one or more characters. It is enclosed in double quotes. They are terminated by
null character (\0) in c. To store string in c, we use char array. In C, char arrays are considered as a
whole during input output. It means we need not to use loops for input output a string. We can
perform many operations on string using many built-in functions. These functions are stored in the
string.h header file. Functions strcpy(), strrev(), strcat(), strcmp(), strlwr(), strupr(), strlen() are
commonly used on strings.
String declaration:
For strings, we use char arrays in c. So to store string, we declare character array. its syntax is:
 char string_variable[length];
For Example:

char str[20];
Here, string variable str can hold the maximum of 20 characters in it.
String initialization:
Like other arrays, strings can also be initialized. It can be initialized in many ways. Consider the
following examples:

char name[10]= “Kansal”;
char name[10]={‘K’, ’a’, ’n’,’ s’, ’a’, ’l’};
char name[10]={‘K’, ’a’, ’n’, ’s’, ’a’, ’l’, ‘\0’};
char name[]= “Kansal”;
char name[]={‘K’, ’a’, ’n’, ’s’, ’a’, ’l’};

We can use any one method to initialize a string or char array.
STRING I/O:
For string input output, we can use the scanf() and printf() functions respectively. In these,
functions, we use %s format code for string input and output. Consider the following examples:
 char name[20]”;

scanf(“%s”,name); //for string input
printf (“%s”, name); //for string output

When we use scanf() for string input, we do not use & operator. But this function can store only a
single word string. We cannot store multiple word string using scanf() function. For this, we use gets()
function. This function is capable to store multiple word string in C. Consider the following example:
 gets(name);
Here if we store “New Delhi”, then it can store this value. But if we use scanf() function, then it will
store only the word “New” in the string variable.
Similarly, we can also use puts() function to display strings in C.
STRING HANDLING FUNCTIONS
There are many predefined functions which are used to manipulate strings, such as strlen(), strupr(),
strlwr(), strcmp(), strcpy()etc. These functions are defined in the string.h header file. So we must
include this file in our program to use string handling functions. Some commonly used string functions
are:

 strlen() – string length function
 strcpy() – string copy function
 strcmp() – string compare function
 strrev() – string reverse function
 strcat() – string concatenation function
 strupr() – string upper function
 strlwr() – string lower function

The strlen() function:
Function strlen stands for string length. This function is used to count the total number of characters
in the given string. Following code shows how to use this function:

strlen(“punjab”); //it returns 6 as string length

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

The strcpy() function:
Function strcpy stands for string copy. This function is used to copy the one string value into string
variable. Following code shows how to use this function.

strcpy(str, “Punjab”);
It copy the string “Punjab” into the string variable str.
The strrev() function:
Function strrev stands for string reverse. This function is used to reverse the given string value.
Following code shows how to use this function:

strrev(“Punjab”);
It reverses the given string to bajnuP.
The strcat() function:
Function strrev stands for string concatenation. This function is used to combines the two strings. It
appends 2nd string at the end of first string. Following code shows how to use this function. Let the
two strings are:

char str1[10]=“Sunam”;
char str2[10]=“City”;
strcat(str2, str1);

It concatenates the second string into first string - CitySunam
The strupr() function:
Function strupr stands for string upper. This function is used to convert the given string into Upper
case (i.e. in capital letter). Following code shows how to use this function:

strupr(“Punjab”);
It converts the given string into PUNJAB.
The strlwr() function:
Function strlwr stands for string lower. This function is used to convert the given string into lower
case (i.e. in small letter). Following code shows how to use this function:

strlwr(“PUNJAB”);
It converts the given string into punjab.
The strcmp() function:
Function strcmp stands for string compare. The strcmp() function is used to compare two strings. It
returns one of the three possible values: zero, negative, or positive. For example:
If 1st string is equal to 2nd string, It returns 0

e.g. strcmp(“punjab”,“punjab”) returns 0
If 1st string is less than 2nd string, It returns negative value

e.g. strcmp(“india”,“punjab”) return –ve value
If 1st string is greater than 2nd string, It returns +ve value

e.g. strcmp(“punjab”,”india”) return +ve value

Following program shows how to use strings in the program. This Program checks whether the given string
is palindrome or not.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

TABLE OF STRINGS:
Table of string is also called 2D character array or one dimensional string
array. It is used to store more than one string value. For this, we have to
declare the two dimensional character arrays. Each row of 2D char array is
used to store a string value. Consider the following diagram to show the
concept of table of strings.
String Array/2D character array Declaration:
Table of strings is an array of strings. To create the table of strings, we have to declare the 2D array of
characters as follows:
 char states[4][7];
This array can store four strings. We can store the name of four states in this array. Each string can be
of seven characters.
String Initialization:
Like other arrays, we can also initialize the string array. Consider the following example:
 char states[4][7]={“Delhi”, “Punjab”, “Goa”, “Bihar”};
Accessing Table of strings:
To access the table of strings, we have to use a single loop. Consider the following example which
shows all the strings:
 for(i=0;i<4;i++)
 {
 printf(“\n%s”, states[i]);
 }
STRUCTURE:
Structure is another derived data types in C. Unlike array, a structure can hold data items of different
types under a common name. Thus, we can define structure as:

“Structure is a collection of heterogeneous data items”
In many computer languages, like Pascal, this type of structure is referred as Record. Structures are
used to organize complex data in a more meaningful way.
HOW TO DECLARE/DEFINE A STRUCTURE
To define a structure, we have to use the ‘struct’ keyword. The syntax for defining a structure is as
follows:
 struct structure-name {
 Data-type data_item1;
 Data-type data_item2
 -
 Data-type data_item_n;
 };
To access or use a structure, we have to declare its variables. Using these variables, we can access the
data items of the structure with the help of dot/period ‘.’ operator. This operator is also termed as
‘member selection operator’.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

UNION
Like a structure, it is also a logical grouping of heterogeneous data items. The main difference between
them is that in union, only one data member is active in memory at a time while in case of structure all
the data members are active in memory at a time. To define a union in C, following syntax is used:

union union_name
{
 data-type dataitem1;
 data-type dataitem2;
 -
 -
 Data-type dataitem_n;
};

Here, ‘union’ is a keyword used to define a union, union_name is a valid identifier representing the
name of union and data-types are the types of data items of a union.

COMPARISION BETWEEN ARRAYS AND STRUCTURES IN C
Both the arrays and structures are structured data types. But they differ in many ways. The differences
between them are given below:

Arrays Structures
1. An array is a collection of related data
elements of same type.

1. Structure can have elements of different types

2. An array is a derived data type 2. A structure is a programmer-defined data type
3. Any array behaves like a built-in data types.
All we have to do is to declare an array variable
and use it.

3. But in the case of structure, first we have to design
and declare a data structure before the variable of
that type are declared and used.

4. Array allocates static memory 4. Structures allocate dynamic memory
5. Array uses index / subscript for accessing
elements of the array

5. Structures use (.) operator for accessing the
member of a structure

COMPARISION BETWEEN STRUCTURES AND UNIONS IN C
Structure Union

1.The keyword struct is used to define a structure 1. The keyword union is used to define a union.
2. The size of structure is equal to the sum of sizes
of its members.

2. The size of union is equal to the size of largest
member.

3. Each member within a structure is assigned
unique storage area of location.

3. Memory allocated is shared by individual
members of union.

4 Altering the value of a member will not affect
other members of the structure.

4. Altering the value of any of the member will
alter other member values.

5. Individual member can be accessed at a time 5. Only one member can be accessed at a time.
6. Several members of a structure can initialize at
once.

6. Only the first member of a union can be
initialized.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

7. All data members of a structure remain
active in main memory at a time during
program execution.

7. Only one data member is active at a time in
main memory during program execution

8. It is used to declare a compounded data type.
For example: it groups data members related to
a person or an item, such as student, employee
etc.

8. It is useful in cases where user selects any
one data member only for the application, e.g.
for preparing a list of student’s names only.

POINTER
‘Pointer’ is the one of the most powerful feature of C & C++. Pointers are like the variables, which can hold
the memory address of another variable. This memory address can be used to access the values of variables.
Thus, pointers can access values directly from RAM. Consider the following example to understand the
pointers:
Let a variable of integer type and assume that it is represented in the main memory as shown in the diagram
below:

int a;
a = 25;

In the above diagram, ‘a’ is an integer type variable, which holds a value ‘25’. Let, the memory address for
this variable is 62010. Thus, we can say that the value ‘25’ can be accessed either by the variable’s name ‘a’
or its memory address ‘62010’.
The pointer variables can be used to store the address of these variables. Consider the following example:

In the above diagram, ptr is a pointer variable. It holds the address of variable ‘a’.
POINTER VARIABLE DECLARATION
The general syntax for declaring pointer variable is:

datatype *ptr;
In pointer declaration, ‘*’ sign is used to declare pointer variable. A pointer can point to the variable having
same data type as that of a pointer variable. Consider the following example:

int * ptr;
The above example declares a pointer variable ‘ptr’ of int type. So, this pointer variable can point to only int
type variables.
POINTER VARIABLE INITIALIZATION
To initialize pointer variable, we have to store the memory address of a variable in it. To do so, we use
assignment operator. For storing the memory address of variable, we use the address operator (&) as shown
below:

In the above example, address of variable of ‘a’ (1024) is stored in the pointer variable ‘ptr’.

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ACCESSING VALUES USING POINTERS OR POINTER OPERATORS:
To access values using pointers, we use pointer operators. Pointer operators are: indirection operator and
address operator. Indirection operator is * and address operators is &. Indirection operator is used to access
the value of a variable using pointer. Symbols & is used to get the address value of the variable. Consider
the following example:

int *ptr, a=5;
ptr=&a;
printf(“%d”,*ptr); // Accessing Values Using Pointers

In the above example, & operator is used to store the address of the variable. The indirection operator us
used to show the value of variable using pointer variable.
POINTERS AND ARRAY:
Like variables, arrays can also be used using pointers. To access array through pointer, we have to
store the memory address of first location of array. Consider the following example:

int a[5]={5,3,8,9,6};
int *ptr;
ptr=&a[0]; //stores the memory address of first location of array
or
ptr=a; // it also stores the memory address of first location of array

After storing the memory address of array, we have to use the loop to access all the array values using
pointer. Consider the following code:
 for(i=0;i<5;i++)
 {
 printf(“\n%d”,*(ptr+i));
 }
This loop shows all the values of the loop through pointer.
FILES:
Files are used to store data permanently. For this, FILE data structure is used in c. For this data
structure stdio.h header file must be included in the program. To open a file, we use fopen() function.
Similarly, to close a file, we use fclose() function. Consider the following block of code. This code
shows how to open and close file using file pointer.

#include<stdio.h>
void main()
{

FILE *fptr;
fptr=fopen(“abc”,”r”);
-
-
fclose(fptr);

}
OPENING FILES
To actually open a file, we call ‘fopen ()’ function. The ‘fopen ()’ function accepts a file name (as a
string) and a mode value indicates whether we want to open the file for reading or writing purpose.
The mode variable is also a string. The fopen() function returns a pointer if the file can be opened. If
the file cannot be opened, a NULL value is returned.
To open the file ‘read.txt’ for reading we might call the fopen () functions as:
 fptr = fopen ("read.txt", "r");
The mode string "r" indicates reading. Mode "w" indicates writing, so we could open ‘write.txt’ for
output like this:
 fptr = fopen("write.txt", "w");
The other values for the mode string are less frequently used. The third major mode is "a" for append.
If we use "w" to write to a file, which already exists, its old contents will be discarded. Following table
shows all the possible modes of opening a file:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Mode Value Description of opening mode

“r” Open an existing file for reading purpose only.

“w” Open a new file for writing only. If a file with the specified filename is
already exists, it will be overwritten.

“a” Open an existing file for appending. Appending means adding new
information at the end of the file.

“r+” Open an existing file for both reading and writing purpose.
“w+” Open a new file for both reading and writing.
“a+” Open an existing file for both reading and appending.
"rb" opens an existing binary file for reading
"wb" Creates a binary file for writing.
"ab" Opens an existing binary file for appending.

"r+b" or “rb+” Opens an existing binary file for reading or writing.
"w+b" or “wb+” Creates a binary file for reading or writing.
"a+b" or “ab+” Opens or creates a binary file for appending.

Table - List of file - opening modes in C
CLOSING FILES
Although we can open multiple files, but there is a limit to how many files we can have open at once. If
we open the files beyond the limit, the standard I/O library could run out of the resources it uses to
keep track of open files. Closing a file simply involves calling fclose() function with the file pointer as
its argument:
 fclose (fptr);

Types of Files
When dealing with files, there are two types of files you should know about:

1. Text files
2. Binary files

1. Text files
Text files are the normal .txt files that you can easily create using Notepad or any simple text editors.
When you open those files, you'll see all the contents within the file as plain text. You can easily edit or
delete the contents.
They take minimum effort to maintain, are easily readable, and provide least security and takes bigger
storage space.
2. Binary files
Binary files are mostly the .bin files in your computer.
Instead of storing data in plain text, they store it in the binary form (0's and 1's).
They can hold higher amount of data, are not readable easily and provides a better security than text files.
C provides a number of functions that helps to perform basic file operations. Following are the functions,

Sequential File Access in C
The simplest way that C programming information is stored in a file is sequentially, one byte after the other.
The file contains one long stream of data.
File access in C is simply another form of I/O.

Function description
fopen() create a new file or open a existing file
fclose() closes a file
getc() reads a character from a file
putc() writes a character to a file

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

fscanf() reads a set of data from a file
fprintf() writes a set of data to a file
getw() reads a integer from a file
putw() writes a integer to a file
fseek() set the position to desire point
ftell() gives current position in the file
rewind() set the position to the begining point

Random Access To File
There is no need to read each record sequentially, if we want to access a particular record. C supports these
functions for random access file processing.
fseek(), ftell() and rewind() functions

 fseek() - It is used to move the reading control to different positions using fseek function.
 ftell() - It tells the byte location of current position of cursor in file pointer.
 rewind() - It moves the control to beginning of the file.

